Martin Ziegler Issued on 2015-06-09
Holger Thies

Computational Complexity in Analysis
SoSe 2015, Exercise Sheet #8

For this exercise you will need to program in the C++ programming language using the 1 RRAM fra-
mework. You can download i RRAM from irram.uni-trier.de. The version on github is recommended
for this exercise, but the current release (2013_01) should also be fine.

If you do not want to install iRRAM on your local computer, you can use Secure Shell to get
remote access to a computer with a working 1 RRAM installation.

ssh irram@zieg.de
Password: TUDarmstadt

EXERCISE 13:
The logistic map is given by the recurrence relation

X1 = a-xu(1 —xp) (1)

for some xp, a € R.
For this exercise we assume xg = 0.4 and a = 3.8.
a) Write a C++ program that computes x,, for n € {10,20,50, 100, 1000, 10000}.

Use the data-type £ 1oat for all variables holding real numbers.
b) Now rewrite your program from a) using double instead of £1oat. Do the results differ? [

c) Write the same program using the 1 RRAM framework and the data-type REAL for real number
computations. Make sure that your output is correct at least up to error 273°. How do the
results compare to part a) and b)?

d) Use 1RRAM’s debug mode to find the number of 1 RRAM iterations and the internal precision
needed to compute x;,, for each of the » in part c).

EXERCISE 14:
In the lecture we have seen the trisection method to compute the zero of a computable function
f:10,1] — R such that f(0) < 0 and f(1) > 0 under the assumption that exactly one zero exists.

a) Write a function

REAL approx-zero (const int p, const std::function<REAL (const REAL&) >&
f)

The function should give an approximation to a zero of f with error bounded by 27 if the
function f is of the above form.

*Depending on your compiler there might in fact be no difference between the f1oat and double data-types.


http://irram.uni-trier.de/

b) Now write a function REAL zero (REAL f (const REAL& f)) computing the zero of
f exactly by making use of 1RRAM’s limit operators.

Using the limit operator on a function that has a function as input is a little tricky.

Instead of the limit seen in the lecture, the following function can be used

REAL limit (const FUNCTION<REAL,int> & f )

It works the same way as REAL 1limit (REAL f (int) ) buttheinputisa FUNCTION ob-
ject. FUNCTION is aclass defined by i RRAM, that can be constructed froman std: : function
object g by using the function from_algorithm (g).

Now, to use this limit operator you have to apply partial application to bind f to the second
parameter of the approx_zero function, i.e., define a function REAL h (int p) such
that h (p) = approx_zero (p, f).

¢) Can you extend your program such that the function can have more than one zero?



