## **Computational Complexity in Analysis**

SoSe 2015, Exercise Sheet #12

The lecture defined the *(outer) metric entropy* of a totally bounded metric space (X,d) as the mapping  $[X]: \mathbb{N} \to \mathbb{N}$  as follows:

For every  $n \in \mathbb{N}$ , X can be covered by  $2^{\lceil X \rceil (n)}$ , but not by  $2^{\lceil X \rceil (n)-1}$ , open balls of radius  $2^{-n}$ .

The *inner metric entropy*  $[X] : \mathbb{N} \to \mathbb{N}$  is defined as follows:

For every  $n \in \mathbb{N}$ , there exist  $2^{\lfloor X \rfloor(n)}$ , but not  $2^{\lfloor X \rfloor(n)+1}$ , points of pairwise distance  $\geq 2^{-n}$ .

For metric spaces (X,d) and (Y,e) and for L>0 write

$$\operatorname{Lip}_{L}(X;Y) := \left\{ f : X \to Y \mid e(f(x), f(x')) \leq L \cdot d(x, x') \right\}$$

for the set of *L*–Lipschitz functions. Moreover for  $\mu : \mathbb{N} \to \mathbb{N}$  let

$$C_{\mu}(X) := \left\{ f : X \to \mathbb{R} \mid \forall x, x' : d(x, x') < 2^{-\mu(n)} \Rightarrow |f(x) - f(x')| < 2^{-n} \land |f(x)| \le 2^{\mu(0)} \right\}.$$

Finally let  $d_S: X \ni x \mapsto \inf\{d(x,s): s \in S\} \in \mathbb{R} \cup \{\infty\}$  denote the distance function of  $S \subseteq X$  and  $\tilde{d}_S:=\min\{1,d_S\}$  its cut-off.

## **EXERCISE 18:**

- a) Prove  $\lfloor X \rfloor (n) \leq \lceil X \rceil (n)$ .
- b) Prove  $[X](n) \leq [X](n+1)$ .
- c) Calculate the metric entropy of [0;1].
- d) Calculate the metric entropy of  $[0;1]^d$  for every  $d \in \mathbb{N}$ .
- e) Show  $d_S \in \text{Lip}_1\left(X, \left[0; 2^{\lceil X \rceil(0)}\right]\right)$  for connected X, and  $\tilde{d_S} \in \text{Lip}_1\left(X, \left[0; 1\right]\right)$ .
- f) Prove  $\lfloor \operatorname{Lip}_1(X,[0;1]) \rfloor(n) \geq 2^{\lfloor X \rfloor(n)}$ . Hint: Take  $x_1,\ldots,x_N \in X$  of pairwise distance  $\geq 2^{-n}$  and show  $\sup_{x \in X} |\tilde{d}_S(x) \tilde{d}_{S'}(x)| \geq 2^{-n}$  for  $S,S' \subseteq \{x_1,\ldots,x_N\}$  with  $S \neq S'$ .
- g) Prove that a set  $\mathcal{C} \subseteq C(X)$  is relatively compact—iff—there exists a  $\mu : \mathbb{N} \to \mathbb{N}$  such that  $\mathcal{C} \subseteq C_{\mu}(X)$ . Hint: Arzelà-Ascoli.
- h) Complement f) by devising a (not necessarily matching) upper bound on  $[\text{Lip}_1(X,[0;1])](n)$ .