Theory of Computation, Fall'15 KAIST

CS422 M. Ziegler

Schedule: Tue.+Thu. 14h30—15h45 in N1 #111
Language: English (except Piazza forum)
TA: 20| &, office hours after lecture in N1 #403

Attendance: 10 points for missing <5 lectures,
9 points when missing 5, and so on.

Grading: Homework 20%, Midterm exam 30%,
Final exam 40%, Attendance 10%.

Homework: Assigned roughly every 2nd week, 11
days to solve, individual handwritten solutions.

Literature, slides, assignments etc:
http://theoryofcomputation.asia [15b CS422/

Exams: Midterm Oct. 22, Final exam Dec. 17

Students' Background Check KAIST

CS422 M. Ziegler
? CS204 Discrete Mathematics
? C5206 Data Structures
? CS300 Introduction to Algorithms
? CS320 Programming Languages
? CS322 Formal Languages and Automata
? MAS275 Discrete Mathematics
? MAS365 Intro. to Numerical Analysis
? MAS477 Introduction to Graph Theory
? MAS480 Topics in Mathematics
? graduate courses (at KAIST)
? non-KAIST courses

KAIST

CS422 M. Ziegler

81 Motivation & Examples

Four elementary examples of Comparison
_ P2y -sort for 3
*models of computation -~ ~____elements

(a,<a,) (a<a)

=syntax vs. semantics”

S G [217] Gu<a)
=limits of computability

| 132> ‘1 12>| [<23 t'~‘ l<321>

=algorithmic optimality

Example 1: Optimal Sorting Algorithm
Problem specification:

Model of computation: Second algorithm:

First algorithm: Its cost analysis:

Its cost analysis: Proof of optimality:
KAIST

Example 2: Finite Automata

CS422 M. Ziegler

= Motivation from practice

Syntax and semantics States (7,m,q)

y | where hOH={0,1,...,23}
Example algorithms mOoM=40,1,....59}
Programming challenges g0{ NIL, setH, setM }
Limits of computability |Operations SET and INC:

Equivalent characterizations

INC: (h,m,NIL) - (h,m,NIL)
SET: (h,m,NIL) - (h,m,setH)
SET: (h,m,setH) - (h,m,setM)
SET: (h,m,setM) - (h,m,/NIL)

0 1
—»O INC: (h,m,setH) - (h+1 mod 24,m,setH)
1

INC: (h,m,setM) - (h,m+1 mod 60,setM)

Computability by Finite Automata

KAIST

CS422 M. Ziegler

Lemma: Suppose L[0{0,1}" is accepted by
a finite automaton. Then there exists some
nCN s.t. every wlL of length |wj>n admits a
decomposition w=xy z with [y>1 and [x y|sn
such that xy z[L holds for every jDN

{ On1mQk

:n,m,KIN }
Theorem: a) { 0"1": nDN}

cannot be accepted by a

ema ntics
omaton.

b) To every non-deterministic finite automa-
ton there is an equivalent deterministic one.

- = KAIST
Asymptotic Efficiency —
n log,n -10s | n-log n sec n2 msec n3 psec 2" nsec
10 33sec 33sec 0.1sec 1msec 1msec
100 =1min 11min 10sec 1sec 40 Mrd. Y
1000 =1.5min =3h 17min 17min
10 000 =2min 1.5 days =1 day 11 days
100 000 =2.5min 19 days 4 months 32 years

= Running times of some sorting algorithms

= BubbleSort O(n?) comparisons and copy instr.s

= QuickSort typically O(n-logn) steps
but O(n2) in the worst-case

= HeapSort always at most O(n-logn) operations
= BucketSort O(Nn) operations

= W.r.t.

= SORTprimitive: O(1)
= Worst-case vs. average-case Vvs. best case

input size (e.g. bit length) =:

n - o

Example 3: Algebraic Computation KAIST

CS422 M. Ziegler

Warmup Problem: Fix nLN. Given X, calculate x".

e Naive algorithm: n-1 multiplications

e Improve: Calculate x2, x4, X8, ..., x* for k:= Llogznj
Then multiply powers x? with b=1, where
n=b,+2b,+4b,+...+2b, is the binary expansion.

e Homework: Improve by a constant factor!

e Asympt. optimality: Each multiplication at most
doubles the degree of the intermediate results;

so computing X" requires at least log,n of them.

Example 3: Matrix Multiplication KAIST

CS422 M. Ziegler

» Input: entries of nxn-matrices A,B O(n3),
= Wanted: entries of nxn-matrix C:= A+B _
= High school: n2inner products a O(n): optimal

7 multiplicationsC__ +18additions <_of (n/2)x(n/2)-matrizes.

Ti=(Ay A,) By 4

C,,|C AL A B,,|B
T2::(A1,1+A1,2)'BZ,2 1,1| ~1,2 _ 1,1 M,2 . 11| P12
T3::A1,1'(Bl,2'82,2) C2,1 Cz,z A2,1 A2,2 BZ,l Bz,z
_ asymptotics | World record O(n?3
L(n) - 7L(n/2]) [dominated byj [Coppersmith&Wino(grad';) :
#multiplication Frargois Le Gall'14

L(n) = O(nl°%"), log,7=2,81

KAIST

CS422 M. Ziegler

Some mathematical background
= Sets: {0,1}, {0,1,2,...}=N, 7={0,-1,1,-2,2,...}
= Cartesian products XxY, X", X*; subset, powerset

= properties, relations; e.g. prime numbers, <

= functions f.[JX—Y, total, injective, surjective;

[s="s=%r;print s%%s";print s%s well-definition

Im-/Possibility results & techniques

o N2 [(x,y) — 2 (2y+1)-10
space-filling curve, fractals

*sP _ J e 2N js uncountable

e NFAs equivalent to DFAs

e There is a Python program * andsois [071]
printing it's own source (w/o file access)

e /2 is no fraction

Alan M. Turing 1936 *2=T

CS422 M. Ziegler

ofirst scientificcalculationson digitalcomputers
*\Whatare its fundamentalimitations?

') 4+ 00
B—.<§ B B'—» e

AN
*UndecidabldHalting ProblemH: No algorithmB

ca@sco@aniﬁmwmﬁ%

Given{AX), doesalgorithmA terminateon input x?

Proofby contradiction ConsideralgorithmB' thaty)
oninputA, execute® on{A,A and,upona positive
answerloopsinfinitely. How doesB' behaveon B' ?n so

KAIST

CS422 M. Ziegler

Summary of §1

The Theory of Computation
= considers mathematical models of computers

= (often separating their syntax from semantics),
= explores their capabilities and limitations
= as well as optimal asymptotic algorithmic cost.

We have seen four examples:
= comparison-based branching trees

* finite automata
= unit-cost algebraic / Blum-Shub-Smale machine
= some (unspecific/generic) programming system

KAIST

CS422 M. Ziegler

§2 Computability Theory

= Computability, semi-/decidability, enumerability

Examples of undecidable problems

Reduction: comparing problems

Busy Beaver function

LOOP programs

Ackermann function

= WHILE programs

KAIST

CS422 M. Ziegler

Un-/Semi-/Decidability I

Definition: a) An 'algorithm' AA computes a
partial function f:0{0,1}* - {0,1}* if it

e on inputs xOddom({) prints f(X) and terminates,
e on inputs Xxldom({) does not terminate.

[Cmp. [Papadimitriou §3.3], [Sipser §3.2+§4.2]}

b) A decides set LL{0,1}* if it computes its total
char. function: cf (X):=1 for xUL, cf (X):=0 for Xx[IL.

c) A semi-decides L if terminates precisely on XL

d) A enumerates L if L=rangef) for some
computable total injective f{0,1}* - {0,1}*.

KAIST

CS422 M. Ziegler

Un-/Semi-/Decidability 11

Example: The Halting problem H, considered as
subset of {0,1}*, is semi-decidable, not decidable.

Theorem: a) Every finite L is decidable.

b) L is decidable iff its complement LC is.

c) L is decidable iff both L, L€ are semi-decidable.
d) L is enumerable iff infinite and semi-decidable.

b) A decides set LU{0,1}* if it computes its total
char. function: cf (X):=1 for xUL, cf (X):=0 for Xx[IL.
c) A semi-decides L if terminates precisely on XL

d) A enumerates L if L=rangef) for some
computable total injective f:{0,1}* - {0,1}*.

KAIST

Comparing Problems o——
Halting problem H={(AX) : A(X) terminates }
Nontriviality N={ (A) : Oy: AA(y) terminates }
Totality problem T = { (A4) : 0z A(2) terminates}

unde-
*H<N cidable

e H < unde-
HST cidable

*N<H
«T<H

For L,L'[1{0,1}* write L<L' if there is a computable
f.{0,1}* -{0,1}* such that [x: x[IL = f(x)LIL".

a) L' decidable = so L. b) LLL'KL" = L<L"
LOOP Programs KA'SE

Syntax in Backus—Naur Form:

P=(x=0|x=x+1|P;P|
LOOPX, DO P END)
Example: simulate

Semantics: "% :=max(0,x—1)" :
" X,,...% contain input [INK

* LOOP executed x times)EC;gPXkD(Z)
= Body must not contain X % 1
. 7 X3 X = X
Example: lat .
ample: simulate END

"if 70 thenP elseQ"
X.:=0; LOOPXJ- DO x.:=1END ;x,:=1,;
LOOPX, DOP; X ,:=0 END ; LOOPx, DO QEND

Capabilities of LOOP Programscggz‘\h:_":;er

Examples: simulate addition "X, :=x+x"

X = 0; LOOPX DO x:=x+1 END;
LOOPX DO X, :=x +1 END ,

Simulate multiplication "X /=5x%X;"
X = 0; LOOPx, DO[X, := X, + X |END

Now recall Ackerman's function (Problem 1d):
A(1,n)=2n, A(L,0)=1, A(t+1,n+1) =A(L,AL+1,n))

Theorem: ¢ To every LOOP program P=P(X,,...X,)
there exists some (=C(P)ON s.t. P on input x[ONK
makes at most A(£,n)<wo steps where n:=max(1,}||,)

e A(n,n) is not computable by any LOOP program!

KAIST

Proof by Structural Induction ——
P=(x:=0[x:=x+1|P;P| LOOPx;, DOPEND)
Lemma: A(CL+1,n+m) = AL, ALA(...A(L,A(L+1,n)))))

Proof, induction: x := 0 [x = x + 1: 1<A(1,1) steps

P;P: A(L,n) +A(LALN)<ALN) + A(L+1Nn+])

LOOPx, DO P END: SA(“Z’&_T::E?
A(L,n-x)+A(L,A(L,n-x))+AL,A(L,A(L,N-X)))+... steps
< A(L+1n)+AL+1n)+... < A(L+2,n)
Theorem: ¢ To every LOOP program P=P(X,,...X,)
there exists some (=C(P)ON s.t. P on input x[ONK

makes at most A(£,n)<owo steps where n:=max(1,}||,)
A(1,n)=2n, A(¢,0)=1, A(t+1n+1) =A(L,A(L+1n))

Power of LOOP Programs chffh:fz

Def: Recall bijective N2[(x,y) — (X,y):=2%(2y+1)-1 [N
and write (X,y,2:= {({X,¥),2), XVY,Z,W:=(X,y,2,wW) etc.

Lemma: a) There exists a LOOP program that,
given X,yLIN, returns (x,y)LIN.

b) There exists a LOOP program that,
given (X,y)LIN, returns X and yLIN.

c) There exists a LOOP program that, given
integers N<N and (Xy,X, ..., %,...,X, returns X.

d) There exists a LOOP program that, given n<N
and Yy and (X{,Xo, ..., %,..., %), returns (X;,%,,...,Y,....,x%)-
~ array of integers with indirect addressing |

KAIST

CS422 M. Ziegler

WHILE Programs

Syntax in Backus—Naur Form:
P=(x=0|x=x+1|P;P|
WHILE x; DOP END)

Semantics: loop executed as long as XJ-;éO

Observation: a) To every LOOP program P
there exists an equivalent WHILE program P'.

b) As opposed to LOOP programs, a WHILE
program might not terminate (on some inputs).

Question: Does every WHILE program P admit a
bound t(P,n) such that P, on inputs X[ONK on which
it does terminate, makes at most t(P,||X||,) steps?

First UTM Theorem -l
. Ziegler

UTM-Theorem: There exists a LOOP program
U’ that, given (P)LUN and (Xy,....X)LUN and NLI,

simulates P on input (Xy,...,X,) for N steps.

Proof (Sketch): Use one variable y for (Xi,...,X.),
and z to store the current program counter of P:

Case (P)(2):

wX;=0" (xl,...xj,...,xn> = (Xy,...0,...%) 7 zZ=z+1

uXii =X+ 10 (X oo Xy X)) 1= (K, X F LX) s Z=z4]

+WHILE x; DO" : if XJ-:O then z=1+#ofcorresponding END
~END" : Z .= #of corresponding WHILE

Definition: Let (P)LIN denote the encoding of
WHILE program P (e.g. as ascii sequence).

KAIST

CS422 M. Ziegler

Normalform Theorem

UTM-Theorem: There exists a LOOP program
U’ that, given (P)LUN and (Xy,.... XN and NL,

simulates P on input (Xy,...,X) for N steps.

Normalform-Thm: To every WHILE program P

there exists an equivalent one P’ containing only
one WHILE command (and several LOOPs).

Corollary: A WHILE program U can semi-decide
the Halting problem for WHILE programs,

but no WHILE program can decide it.

H={ (P),(Xy,...x)) : P terminates on inputx{...x,) }

SMN Theorem: Currying C:ffh:f’z

Definition: Let P = (P)LIN denote the encoding of

WHILE program P o _
and P =)P(its inverse/decoding.

Example (Calculus): imagine f(X)y) = sin)-&

SMN-Theorem a) There exists a WHILE program
C that, given (P)LIN and xLIN, returns (P(X, -),

where P(X, -)(X,,...X) = P(X,X,,...X,)
SMN-Theorem b) There exists a WHILE program
D that, given (P)LIN, returns (Q)LIN with
Q(XXy, .. %) = YP(X){ (Xy,...%) for all X,X,,...%,

KAIST

CS422 M. Ziegler

Summary of §2

= Computability, semi-/decidability, enumerability

Examples of undecidable problems

Reduction: comparing problems

LOOP programs
simulating +, -, x, +, IF-THEN-ELSE

"implementing"” a stack/array

Ackermann's function and runtime bounds

= WHILE programs
= UTM, Normalform, SMN Theorem

KAIST

CS422 M. Ziegler

§3 Complexity Theory

= Model of computation with cost
= Complexity classes P, NP, PSPACE, EXP

= and their inclusion relations

= Encoding graphs/non-integer data

= Example problems: EC, HC, VC, ILP, IS, Cligue
= Comparing difficulty: polynom. reduction

= NP and completeness

= Time hierarchy, U7P and cryptography

KAIST

CS422 M. Ziegler

Model of Computational Cost

WHILE takes expon. time to add two n-bit integers
Now WHILE+ programs: Input X;LIN, output X,LIN

=0 =1x =X+ 0 | %=X =X |
X =%+ 2] P;P | WHILE x;. DO P END

Definitions: binary length of x[N: ((X) := 1+Llog2 X
e time of a WHILE+ program P on input x=(Xy,...X,)
e space (=memory) used: max £(X):=0(X)+...+L(X,)

e asymptotic time/space t(n)/s(n):
worst-case over all inputs X with £(x)<n

e better pairing function (X,y) := X + (X+Yy)-(X+y+1)/2

KAIST

CS422 M. Ziegler

Some Complexity Classes

Definition: a) A WHILE+ program computes the
function NN if on input X it prints f(X) and
terminates in time t(n) / space s(n), n:=¢(X)
Polynom.growth: [k t(n)<O(nX); exponential: 200
Def: For decision problems LON or LU{0,1}*
e P ={ L decidable in polynomial time }

o /NP ={ L verifiable in polynomial time }, i.e.

L ={ xON : OyON, £(y)<poly(¢(x)), (x,y)0V}, vOP

e PSPACE ={ L decidable in polynomial space }
e TXP ={ L decidable in exponential time }

Theorem: P [1 NP OO PSPACE [0 EXP

KAIST

CS422 M. Ziegler

Non-Deterministic WHILE+

Theorem: LLIN is accepted by a non-deterministic
polynomial-time WHILE+ program iff LLINZP.

=0 g =1 x =X | %=X =X |
X =% + 2 |gquessq | P;P| WHILE x, DO P END

Definition: A non-deterministic WHILE+
program may (repeatedly) guess a bit (0/1).

e Its runtime is <t(n) if it makes no more than
t(€(x,)) steps, regardless of the guesses.

e It accepts input X, if there exists some choice of
guessed values such as to return X,=1.

e It rejects X, if no choice of guesses returns X,=1.

KAIST

CS422 M. Ziegler

Preliminaries: Graphs and Coding

= A directed graph G=(V,E) is a finite set V of
vertices and a set ELIVxV of edges

= Call G undirected if it holds (u,WLE < (v,u)UE

= sometimes c.E—N assigning weights to edges.

For input to a WHILE+ program:
= Represent (G,c) as adjacency matrix ALNVV
= Alu,v :=c(i,)) for (u,v)OE,
= Alu,M :="" for(uv) OE
= Undirected case: only upper triangular matrix.

= Encoding (G,c)LIN has [G,c)|= |V|

Example Problems (I) KA'ST

In an undirected graph G, Eulerian cycIe traverses
each edge precisely once; ,ﬂmi‘g% P
Hamiltonian cycle visits awe
each vertex precisely once.

save |solate
vertlces |

G admitting a Eulerian
cycle is connected anc o
has an even number of edges |nC|d n‘t to gac

Theorem: Conversely every connected graph
with an even number of edges incident to each
vertex admits a Eulerian cycle.

EC :={ (G) | G has a Eulerian cycle} NP
HC :={ (G) | G has Hamiltonian cycle} NP

Example Problems (II) 220

= Eulerian (EC) vs. Hamiltonian Cycle (HC)
* (Minimum) Edge Cover \/p

"To graph G, find a smallest set F of edges
s.t. any vertex v is adjacent to at least one e lF."

= vs. Vertex Cover (VC) ‘NP m%r)‘fiﬁqdﬂ%enﬁgetﬁi ggj

= CLIQUE ={ (G,K | G contains a k-clique ‘\v;;q/gy
» |S={(G,K : G has Kk pairwise non-adjacent ¥grticss}
Inte ' ' ""H‘Q
o ger Linear Programming ‘NP ? A“"
ILP={ (Ab): AOz™™ blz™ [XOZ". Ax=b}

VC ={(V,Ek): UOV, |U|=k, O(x,y)JE: xOU OyOu }

NP L xON: Oy, e(y)<poly((x)), xy)0Vv}, vOP

Example Problems (III) KA'ST

Def: A Boolean term Examples: -
®(Y,,...Y,) is composed *(-x0y) D('&B/&)S
from variables Y,,...Y,, *(=x0y) O(x0y) O
constants 0 and 1, and *(=x0y) U(xU-2z)

operations 0, 0, . 0(zO=y) OXO ()
lause literals
® in 3-CNF if @ = LAG)y. 0@y O(=)y))

EVAL: Given (®(Y,,...Y,)) and y,,...y,[{0,1},
does ®(y,,...y,) evaluate to 1? [P
[k-] SAT: Given ®(Y,,...Y,)) [in k-CNF],
does it hold Oy,,...y,[0{0,1}: ®(y,,...y)=1"7?

KAIST

CS422 M. Ziegler

Comparing Problems, again
CLIQUE ={ (G,K | G contains a k-clique
=, 1S={ (G,K : G has k pairwise

non-connected vertices}

For L,L'UN write L<p L' if exists a polynomial-time
computable f: NN such that Ox: x[OL < f(X)CIL".
a) L'[dEBciddhle’—= so L. b) L<p|_'<p|_" = L<p|_"

Reduction |S <p SAT KAIST

CS422 M. Ziegler

Goal: Upon input of (the encoding of) a graph G and kLN,
produce in polynomial time a CNF formula @ such that:

¢ satisfiable iff G contains 2k independent vertices

Let G consist of vertices V={1,..,nt and edges E.

= Consider Boolean variables X,;, vUOV, F1.Kk
Vertex v is #i among the k independent. There is an

_ I-th vertex
= and clauses K;:=L |, X,;, I=1..K

Vertex v cannot

= and _IXV'D_IXV" VD V’ 1SI<jSk be both #i and#j.
! ! No adjacent

= and = x,;0=x%,;, {uvt OE, I=ijsk | vertices are

= Length of ®: O(k-n+n-K+n%k?)=0(n?k?) ingienpce;?(e;r;:

= Computational cost of (G,k) — ®: polyn. in ntlog k

Example Reduction: 4SAT vs. 3SAT c:le:\:?-:-l

4-SAT: Is formula @(Y) in 4-CNF satisfiable?
3-SAT: Is formula ®(Y) in 3-CNF satisfiable?

Given ®=(alUbUclOd) O (pUqUr Os) O...
SR s

with literalsa,b,c,d, p,q.r.s,.. T\QOSZ%rl'S‘?'eeSated ’
Introduce new variables u,v,... and consider
¢®' :=(albUu)d(-ulcld) f: (D) _ (D)

O(p OqUv) O(—-vU OrOs) O...

For L,L'CIN write L L' if exists a
computable f: NN such that [x: x[OL < f(X)CIL".

Reduction 3SAT <p |S KAIST

CS422 M. Ziegler

Produce, given a 3-CNF term @, within polynomial time a
graph G and integer k such that it holds: & is satisfiable
iff G contains k pairwise non-adjacent vertices.

e.g. (ul.0.)0(.0-u0.)0(.0..0u)0(ud..0..)

e=C, UC,... UC, C=x; Ux, Uxs, X literals
Vi={(i,1),...0,3):isk}, E:={{(i,9),(,0}: 15 orxg=x,}

'?\G’l) -Q(Kk,1)
/ (1,2) T
(1,3)

(k,2)

J (k,3)

Problems of similar complexity KAIST
(unknown vyet] CS422 M. Ziegler

= Showed: CLIQUE =, IS, SAT =, 3SAT <, IS.

= These 4 problem have about same complexity:
= Either all are belong to P, or none of them.

= We will show: Also TSP, HC, VC and many further
problems in /NP belong to this class called NPc.

= And will show: These are ‘hardest' problems in NP,
Cook-Levin Theorem: Every L € NP has L <, SAT.

» That is, if someone finds a polynomial time algorithm
for any problem in NPc, this would prove P=N7P:

= A deterministic WHILE+ program could simulate any
non-deterministic one with polynomial slowdown!

= And, conversely, a proof that any of these probleme

cannot be solved in polynomial time implies that
no problem in /NPc can be solved in polynomial time!

T

ler

Complexity Class Picture/fXT

PSPACE

Def: AONZP is NP-complete if complete
L <, A holds for every LONP. PSP AC

Theorem (Cook'72/Levin'71):
SAT is N?—comp_lete!

L e m m a " For A COMPUTERS AND INTRACTABILITY
A Gu

heory of NP-Completeness

NP-complete
and A<, BONP,
B is also NPc.

Now know =500
natural problems
NP-complete...

Master Reduction =T

The following problem UNP is NP-complete:

{ (Ax,2N): nondetermin. WHILE+ program A
accepts input X within at most N steps }

Proof: UNPONDP:

Let LONP be arbitary but fixed.

There exists a nondeterministic WHILE+ prog. A
accepting L in time p(n) for some polynomial p.
Reduction X — (A, x, 2°/(tX)Y, (]

NP L xON: Oy, e(y)<poly((x)), xy)0Vv}, vOP

SubsetSum is NP-complete C!ffh:fz

{ (a,...ayb) | a,...a,b0N, [n,,...0,{0,1} : b=2 a-a.}
* SubsetSUmONP ' Show: 3SAT <, SubsetSum
= In polyn.time: 3CNF & — AON and bON s.t.
= [katisf. assignm. of & ~ [BOA: b=>_ga

Eg. ® = (X, O-X, OXe)| O (=%, OXe OX,) O(=X%, OaX, O=Xc)
3 1 5 4 2 2 5

v, :=[100[10000| v,' :=[0110[10000] b :=[444[11111
v, :=(000/01000| v,' :=(002|01000| ¢,:=[100 00000
V3 1= 000/00100] v;':={100/00100| d1:=[200 00000
v, :=/010(00010| v, :=(000(00010| 32959 00000
V5 :=[110(00001] vs' :=[001]00001] "= 001 00000

m clauses in nvar.s — 2n+2m+1 values a n+m dec.digits

Time Hierarchy Theorem 684"2?5?
. Ziegler

The following problem UTIMES3 can be decided in
time O(n°) but not in time O(n?):

{ (A,2\Y : deterministic WHILE+ program A
does not accept input (A4,2V)

within at most (J[(A)|+N)3 steps }

Proof: UTIMES decidable in time O(n°). v
Suppose B decides UTIMES? in <K-r? steps, KON.

N> k| Case (B,2YOUTIMES?: contradiction.
Case (B,2Y2OUTIMES3: contradiction.

U simulates A on input X in time [(A)[P+KX)]? per step

Complexity and Cryptography C!ffh:?-;

A Public-Key System with key-pair (g,d)
consists of two functions E(eX) and D(d,y)
such that D(d,E(ex))=x holds for all x.

Call :N—N a one-way function if [R&ﬂ]
i) injective and £(X)* = £(f(X)) = L(X)Y* for some k
ii) computable in polynomial time (i.e. f{LI1FP)

i) but 10 FP | |mp035|ble if P=NP|= f 1Df.7\ﬂ)

encrypt W|th private key €, decrypt with pu‘bllc key d.

One-Way Functions and U7P C:ffh:i

Definition: Call a nondeterm. WHILE+ program

unambiguous if, for any input X, P [0 UP [NP
it has at most one accepting computation.

‘UP = { decision problems accepted by unambiguous
polynomial-time nondetem. WHILE+ programs}

Theorem: P # ‘UP iff one-way functions exist.

Proof (I : For one-way f let L :={(xy) | O=x: f(2)=y }

Then LOUZP. Binary search with polynomially
many queries for LOP would imply f1O7FP.

=: Let UP\P OL={ x|0Oy: (Y)<L(X* X,y OV}

and define f({X,y)):=2x+1 for xUIL; else f(2):=2z

This is one-way!

KAIST

CS422 M. Ziegler

Summary of §3

= Model of computation with (bit) cost
= Complexity classes P, NP, PSPACE, EXP

= and their inclusion relations

= Encoding graphs/non-integer data

= Example problems: EC, HC, VC, ILP, IS, Clique
= Comparing difficulty: polynom. reduction

= /NP and completeness

= Time hierarchy, ‘UP and cryptography

KAIST

CS422 M. Ziegler

Conclusion

The Theory of Computation
= considers mathematical models of computers

= (often separating their syntax from semantics),
= explores their capabilities and limitations
= as well as optimal asymptotic algorithmic cost.

§1 Motivation and Examples
§2 Computability Theory

§3 Complexity Theory

KAIST

CS422 M. Ziegler

Perspectives

CS500 Design and Analysis of Algorithms (M.Z.)
CS520 Theory of Programming Languages

CS522 Theory of Formal Languages and Automata
CS548 Advanced Information Security

CS610 Parallel Processing

CS624 Program Analysis

CS700 Topics in Computation Theory

CS712 Topics in Parallel Processing

Theory of Computation Seminar

