Issued on Sep. 3, 2015 Solutions due: Sep.15, 2015

CS422

Fall 2015, Assignment #1

PROBLEM 1:

Recall the Bachmann–Landau symbols \mathcal{O} , Ω , Θ of asymptotic growth of functions $f, g : \mathbb{N} \to [1; \infty)$.

- a) Classify the asymptotic growth of the following functions as logarithmic, polynomial, exponential, or in-between: (i) $\log(n!)$, (ii) $n^{\log\log n/\log n}$, (iii) $2^{(\log n)^2}$, (iv) $2^{\alpha(n)}$ where $\alpha(n) := \min\{m : A(m,m) \ge n\}$ for A according to Item d).
- b) Describe functions f, g with neither $f \in \mathcal{O}(g)$ nor $g \in \mathcal{O}(f)$.
- c) Investigate the power d of asymptotic growth $t(n) \in \Theta(n^d)$ for $t : \mathbb{N} \to \mathbb{R}$ satisfying the following recursion: $t(n) = a \cdot t(\lceil n/b \rceil) + c \cdot n$ for $1 \le a \le b \le c$.
- d) Define $A : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as A(0,m) := 2+m, A(1,m) := 2m, and recursively A(n,m) := A(n-1,A(n,m-1)) where A(n,0) := 1 for $n \ge 2$. Find explicit expressions for A(2,m) and A(3,m) and assert $A(m,m) \ge 2^{2^{2^m}}$ for $m \ge 4$.

PROBLEM 2:

For $n \in \mathbb{N}$ let $\ell(n)$ denote the least number of multiplications to compute the monomial x^n from x.

- a) Recall why it holds $\log_2(n) \le \ell(n) \le 2\lfloor \log_2(n) \rfloor$.
- b) Fix $\lambda \approx \log_2 \log_2 n$ to be later chosen exactly. Assert that all monomials $x^0, x^1, \dots, x^{2^{\lambda}-1}$ together can be calculated using a total of 2^{λ} multiplications.
- c) Fix $a \in \mathbb{N}$ and assert that, given x^a , $x^{a \cdot 2^{\lambda}}$ can be calculated using another λ multiplications.
- d) Adapt Horner's Method to calculate $x^{a_0+a_1\cdot 2^{\lambda}+a_2\cdot 2^{2\lambda}+\cdots+a_d2^{d\cdot \lambda}}$ from x^{a_0},\ldots,x^{a_d} and $x^{2^{\lambda}}$ using $(\lambda+1)\cdot d$ multiplications.
- e) Now choose $d := \lceil \log_2 n/\lambda \rceil$ and $\lambda := \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 n$ to improve (a).
- f) Describe an algorithm asserting $\ell(2^{16}-1) \le 19$.

PROBLEM 3:

Consider the problem of polynomial multiplication: For fixed $n \in \mathbb{N}$, on input a_0, \dots, a_{n-1} and b_0, \dots, b_{n-1} , compute c_0, \dots, c_{2n-1} such that $c_0 + c_1 x + c_2 x^2 + \dots + c_{2n-1} x^{2n-1} + x^{2n} = (a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + x^n) \cdot (b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1} + x^n)$.

- a) How many additions and multiplications does the high school method for this problem (aka long multiplication) incur asymptotically as $n \to \infty$?
- b) Suppose w.l.o.g. (why?) that *n* is even. Describe a recursive/divide-and-conquer algorithm for this problem and analyze the asymptotic number of additions and multiplications it employs.
- c) Verify $(A+A'\cdot X)\cdot (B+B'\cdot X)=C+C'\cdot X+C''\cdot X^2$ where $C:=A\cdot B, C'':=A'\cdot B'$, and $C':=(A+A')\cdot (B+B')-C-C''$. Use this to improve your algorithm from (b).