Issued on Sep.25, 2015 Solutions due: Oct.13, 2015 ## **CS422** # Fall 2015, Assignment #2 #### **PROBLEM 4:** Formalize the following decision problems as subsets of $\{0,1\}^*$. Which of them are (i) decidable, (ii) semi-decidable but not decidable, (iii) not semi-decidable? Prove your answers! - a) Given (the source code in Python of) some algorithm A, input \vec{x} , and an integer $N \in \mathbb{N}$, does A on input \vec{x} terminate within N steps? - b) Given (the source code in Python of) some algorithm \mathcal{A} , does there exist some input \vec{x} on which \mathcal{A} does not terminate? - c) Given some source code A containing a function virus (), does there exist some input \vec{x} that makes A invoke said function? - d) Given a multivariate polynomial $p(x_1,...,x_n)$ with integer coefficients, does it have a complex root? #### **PROBLEM 5:** Recall that decision problem X is called *reducible* to Y (written $X \leq Y$) if there exists a total computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that, for all $\vec{x} \in \{0,1\}^*$, it holds: $\vec{x} \in X \Leftrightarrow f(\vec{x}) \in Y$. Like the Halting and Totality problems, H and T, the following problems X and Y are undecidable: - X) Given an algorithm \mathcal{A} , does it 'ignore' its input in the sense that \mathcal{A} either terminates for all \vec{x} or for none? - Y) Given two algorithms \mathcal{A} and \mathcal{B} , are they equivalent in the sense that, for every \vec{x} , \mathcal{A} on input \vec{x} eventually terminates iff \mathcal{B} on input \vec{x} does (although not necessarily after the same number of steps)? - a) Prove $T \leq Y$. - b) Prove $T \leq X$. - c) Prove $X \preceq T$. ## **PROBLEM 6:** - a) Devise a LOOP program with two arguments n, m computing integer division $\lfloor n/(m+1) \rfloor$. - b) Devise a LOOP program with one argument n computing 2^n . - c) Have your program simulated* and record the running times for n = 1, 2, 3, 4, ... - d) Devise a LOOP program with argument n computing the exponential tower $2^{2^{n-2}}$ of height n. ^{*}e.g. on http://www.eugenkiss.com/projects/lgw/