Prof. Dr. Martin Ziegler +82-42-350-3568

CS422

Oct.22, 2015

Midterm Exam

ziegler@kaist.ac.kr http://m.zie.de

Please write your name and student ID here
as well as on each additional sheet of paper you use!
35 points = 100%
Problem 1 (8 points): In which of the following cases is the set $L\subseteq\{0,1\}^*$ guaranteed to be <i>decidable</i> ? Please mark the correct box(es):
☐ If, for every $\underline{x} \in \{0,1\}^*$, there exists an algorithm \mathcal{A} that, on input of \underline{x} , answers within a finite number of steps whether $\underline{x} \in L$ or not.
■ If there exists an algorithm \mathcal{A} that, for every $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers within a finite number of steps whether $\underline{x} \in L$ or not.
\square If there exists an algorithm \mathcal{A} that, for some $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers within a finite number of steps whether $\underline{x} \in L$ or not.
■ If there exist two algorithms \mathcal{A} and \mathcal{B} where, for every $\underline{x} \in \{0,1\}^*$, \mathcal{A} on input of \underline{x} answers iff $\underline{x} \in L$, and \mathcal{B} on input of \underline{x} answers iff $\underline{x} \notin L$.
\square If there exists an algorithm $\mathcal A$ that ignores its input and prints all $\underline x{\in} L$ in arbitrary order, possibly with repetition.
$lacktriangle$ If there exists an algorithm $\mathcal A$ that ignores its input and prints all $\underline x{\in}L$ in lexicographical order without repetition.
\blacksquare If the set L is finite.
■ If the set L has finite complement $L^{C}=\{0,1\}^*\setminus L$.
No justification or proofs are required here!

Problem 2 (3+3+3 points): Consider the problem of computing, given the coefficients of univariate polynomials $a(x),b(x) \in \mathbb{R}[x]$ of degree $\leq n$, the coefficients of their product $c(x) = a(x) \cdot b(x)$.

- a) How many coefficients does the input consist of, how many coefficients are output? How many additions/subtractions/multiplications/division of coefficients does the high-school method use for solving this problem, asymptotically as $n\rightarrow\infty$? What asymptotic cost does Karatsuba's Algorithm achieve as discussed in the lecture/homework?
- b) Let $a(x) = a_0(x) + x^d \cdot a_1(x) + x^{2d} \cdot a_2(x),$ $b(x) = b_0(x) + x^d \cdot b_1(x) + x^{2d} \cdot b_2(x),$ and $c(x) = c_0(x) + x^d \cdot c_1(x) + x^{2d} \cdot c_2(x) + x^{3d} \cdot c_3(x) + x^{4d} \cdot c_4(x).$

Abbreviate $r(x) := (4a_0(x) + 2a_1(x) + a_2(x)) \cdot (4b_0(x) + 2b_1(x) + b_2(x)),$

$$s(x) := (a_0(x) + a_1(x) + a_2(x)) \cdot (b_0(x) + b_1(x) + b_2(x)),$$

$$t(x) := (a_0(x) + 2a_1(x) + 4a_2(x)) \cdot (b_0(x) + 2b_1(x) + 4b_2(x)).$$

Verify (2) and (3) of the following:

- (1) $c_0(x) = a_0(x) \cdot b_0(x)$
- (2) $c_1(x) = -7/2 a_0(x) \cdot b_0(x) + 1/3 r(x) 2 s(x) + 1/6 t(x) a_2(x) \cdot b_2(x)$
- (3) $c_2(x) = 7/2 a_0(x) \cdot b_0(x) 1/2 r(x) + 5 s(x) 1/2 t(x) + 7/2 a_2(x) \cdot b_2(x)$
- (4) $c_3(x) = -a_0(x) \cdot b_0(x) + 1/6 r(x) 2 s(x) + 1/3 t(x) 7/2 a_2(x) \cdot b_2(x)$
- (5) $c_4(x) = a_2(x) \cdot b_2(x)$
- c) Based on (1) to (5) describe a recursive algorithm for the above polynomial multiplication problem that improves over Karatsuba. What asymptotic cost does it achieve?

Problem 3 (3+3+3 points): Formalize the following decision problems as subsets of {0,1}*. Which of them are decidable? Prove your answers, either by describing an algorithm or by establishing a computable reduction from the Halting problem.

- a) Given a finite sequence of brackets " (" and ") ", are they correctly nested?
- b) Given an algorithm \mathcal{B} , is the set of inputs \underline{x} on which \mathcal{B} terminates finite?
- c) Given a finite automaton \mathcal{A} , does there exist a finite binary string x that \mathcal{A} accepts?

Problem 4 (3+3+3 points): Recall the bijection $\mathbb{N}^2 \ni (x,y) \to \langle x,y \rangle := 2^x \cdot (2y+1) - 1 \in \mathbb{N}$.

- a) Devise a LOOP program that, given x and y, computes $\langle x, y \rangle$.
- b) Devise a LOOP program that, given $\langle x, y \rangle$, computes x and y.
- c) We define $\langle x,y,z\rangle := \langle \langle x,y\rangle,z\rangle$, $\langle x,y,z,w\rangle := \langle \langle x,y,z\rangle,w\rangle$, and so on inductively. Devise a LOOP program that, given integers $k \le n$ and $\langle x_1,x_2,...,x_k,...,x_n\rangle$, returns x_k .