Design and Analysis of Algorithms

Schedule: Tue.+Thu. 14h30—15h45 in E11 #309

Language: English **Prerequisites:** CS300

TAs: 박세원, 이원영, 임준성, 최규현 CS204+CS206

Attendance: 10 points for missing <5 lectures, 9 when missing 5, 8 when missing 6, and so on.

Grading: Homework 20%, Midterm exam 30%, Final exam 40%, Attendance 10%.

Homework: Assigned roughly every 2nd week, 7 days to solve, individual handwritten solutions.

Literature, slides, assignments etc:

http://theoryofcomputation.asia/16CS500/

Exams: Midterm April 21, Final exam June 16

Background Check

- ? CS204 Discrete Mathematics
- ? CS206 Data Structures
- ? CS300 Introduction to Algorithms
- ? CS320 Programming Languages
- ? CS322 Formal Languages and Automata
- ? MAS275 Discrete Mathematics
- ? MAS365 Intro. to Numerical Analysis
- ? MAS477 Introduction to Graph Theory
- ? MAS480 Topics in Mathematics
- ? graduate courses (at KAIST)
- ? non-KAIST courses

Asymptotic Efficiency

KAIST					
CS500 I	M.	Zie	gler		

n	$\log_2 n \cdot 10s$	n·log n sec	n² msec	n³ µsec	2 ⁿ nsec
10	33sec	33sec	0.1sec	1msec	1msec
100	≈1min	11min	10sec	1sec	40 Mrd. Y
1000	≈1.5min	≈3h	17min	17min	
10 000	≈2min	1.5 days	≈1 day	11 days	
100 000	≈2.5min	19 days	4 months	32 years	

- Running times of some sorting algorithms
 - **BubbleSort**: $O(n^2)$ comparisons and copy instructions
 - QuickSort: typically $O(n \cdot \log n)$ steps but $O(n^2)$ in the worst-case
 - **HeapSort**: always at most $O(n \cdot \log n)$ operations
 - **BucketSort**: O(n) operations SORT primitive: O(1)
- Worst-case vs. average-case vs. best case
- w.r.t. input size $=: n \rightarrow \infty$

Example: Powering

Fix $n \in \mathbb{N}$. Given x calculate x^n with few multiplications

Applications: RSA ($x \in \mathbb{Z}_{p \cdot q}$), parallel programming, ...

- Naïve algorithm: *n*-1 multiplications
- Inductive improvement: For $k := \lfloor n/2 \rfloor$ calculate x^k , then $(x^k)^2 = x^n$ or $= x^{n-1}$
- #multiplications $T(n) \le T(n/2) + 2$, $T(n) \le 2 \cdot \log_2(n)$
- Asympt. optimality: Each multiplication at most doubles the degree of the intermediate results; so computing x^n requires at least $\log_2 n$ of them.

Example: Matrix Multiplication

• Input: entries of $n \times n$ -matrices A,B

 $O(n^3)$,

• Wanted: entries of $n \times n$ -matrix C := A + B

• High school: n^2 inner products á O(n): optimal

7 multiplications +18 additions of $(n/2)\times(n/2)$ -matrizes

$$T_4 := A_{2,2} \cdot (B_{2,1} - B_{1,1})$$
 $C_{1,1} = T_5 + T_4 - T_2 + T_7$, $C_{1,2} = T_3 + T_2$

$$L(n) = 7 \cdot L(\lceil n/2 \rceil)$$
asymptotics dominated by #multiplications

World record: $O(n^{2.37})$
[Coppersmith&Winograd'90, François Le Gall'14]

$$L(n) = O(n^{\log_2 7}), \qquad \log_2 7 \approx 2.81$$

Algorithm

A finite sequence of primitive instructions that, executed according to their well-specified semantics, provide a mechanical solution to the infinitely many instances of a possibly complex mathematical problem.

"An algorithm is a finite, definite, effective procedure, with some input and some output." — Donald Knuth

- fully specified (input/output)
- guaranteed correct (no heuristic/recipe)
- 3. analysis of cost (runtime, memory, ...)
- 4. optimality proof (wrt model of computation)

