
CS500 M. Ziegler
§1 Stable Matching

Motivation: Matching KAIST students with labs

automatically (algorithm!) to find stable solution.

Inputs: a) each
student's order of
preferred labs
b) each lab's order
of preferred students

Output: 1-1 pairing
w/out unstabletuples

Def: Tuple (S,P) is
unstableif Sprefers
P over assigned P'
and P prefers S
over assigned S'

PP

SS

P'P'

S'S'

CS500 M. Ziegler

Output: 1-1 pairing
w/out unstabletuples
Output: stable
perfect matching

Def: Tuple (S,P) is
unstableif Sprefers
P over assigned P'
and P prefers S
over assigned S'

Def: Tuple (w,m) is
unstableif w prefers
mover assigned m'
and mprefers w
over assigned w'

Stable Matching

Does it always exist? No!

Pierce

Britta

Troy

Abed Input: n 'men'
and n 'women',
each with a ranking
of preference among
the opposite 'gender'.

Specification:

Reminder: A perfect matching in

a graph G=(V,E) of |V|=2n vertices

is a subset M of n edges

without common vertices.

CS500 M. Ziegler

Def: Tuple (w,m) is
unstableif w prefers
mover assigned m'
and mprefers w
over assigned w'

Stable Matching Algorithm

Output: 'matching'
w/out unstabletuples

Input: n 'men'
and n 'women',
each with a ranking
of preference among
the opposite 'gender'.

Specification:

Gale-Shapley (1962)

M := {}

WHILE some m is unmatched

Let mpropose to w := first on m's list
that mhas not yet proposed to.

IF w is unmatched, add (m,w) to M

ELIF w prefers m to current partner m'
replace (m',w) in M with (m,w)

ELSE w rejects proposal from m.

ENDWHILE // output: M

CS500 M. Ziegler

Def: Tuple (w,m) is
unstableif w prefers
mover assigned m'
and mprefers w
over assigned w'

Proof of Correctness
Observation A: Once a woman is matched, she
never becomes unmatched but only "trades up".

Observation B: Any man proposes to
women in decreasing order of preference. Claim 1: The loop

terminates after

≤n2 iterations.

Claim 2:
All get matched.

Claim 3: Matching
w/o unstable pairs.

M := {}

WHILE some m is unmatched

Let mpropose to w := first on m's list
that mhas not yet proposed to.

IF w is unmatched, add (m,w) to M

ELIF w prefers m to current partner m'
replace (m',w) in M with (m,w)

ELSE w rejects proposal from m.

ENDWHILE // output: M

m'

w'

w

m

CS500 M. Ziegler
Efficiency: implement in OOOO(n2)

Claim 1: The loop
terminates after

≤n2 iterations.

WHILE some m is unmatched

Let mpropose to w := first on m's list
that mhas not yet proposed to.

IF w is unmatched, add (m,w) to M

ELIF w prefers m to current partner m'
replace (m',w) in M with (m,w)

ELSE w rejects proposal from m.

ENDWHILE // output: M

Represent men by numbers 1…n; same for women.

Input: n-element arrays with order of preference

Output: matching, represented by

two n-element arrays wife[m]=w and husband[w]=m;

for each m,w=1…n

For each man m,

lastwproposed[m]

=0 if unmatched.

For each woman

w, inverted order

of preference.

Is this running
time optimal?

CS500 M. Ziegler

Represent men by numbers 1…n; same for women.

Input: n-element arrays with order of preference
for each m,w=1…n

Understanding the Solution

FrankieBrittaAnnieCraig

FrankieAnnieBrittaBen

FrankieBrittaAnnieAbed

3rd2nd1st

CraigBenAbedFrankie

CraigBenAbedBritta

CraigAbedBenAnnie

3rd2nd1st

Example [two stable matchings]

{ (Abed,Annie) , (Ben,Britta) , (Craig,Frankie) }

{ (Abed,Britta) , (Ben,Annie) , (Craig,Frankie) }

Gale-Shapley produces that stable matching

where every m gets assigned his most preferred choice

among all w matched to him in any stable matching;

whereas w gets assigned her least preferred choice.

why?why?

