
CS500 M. Ziegler
§4 Fast&Slowly Growing Functions

2n exponential

22ⁿ doubly exponential

…

22⋰2 tower of height n

aka tetration 2↑↑n = 22↑↑(n-1)

log N = min{ n : 2n ≥ N }

loglog N = min{ n : 22ⁿ ≥ N }

log*(N) = #iterations of log
before argument ≤1

= 1 + log*(log N), N>1

Example: log(264)=? loglog(2128)=? log*(2256)=?

Ackermann function

A0(n)=n+2, Ak+1(0)=Ak(1), Ak+1(n+1) = Ak(Ak+1(n))

A1(n) = 2n+3, A2(n) = 2n+3-3, A3(n) =2↑↑(n+3)-3

Inverse Ackermann α(N) = min{ n : An(n) ≥ N }

CS500 M. Ziegler
§4 Disjoint-Set Data Structure

MakeSet(x) FindSet(x) Union(x,y)
return "handle" to set

Example Application: graph G=(V,E)
connected components with 'growing' E:

sameComponent(u,v): return FindSet(u)=FindSet(v)
addEdge(u,v): Union(u,v)

Naive implementation as forest of depth 1:

m:=n/2 of which are MakeSet →→→→ runtime quadratic in n

Goal: amortized O*(1)

n calls,

Weighted union heuristic: attach smaller to larger tree

Theorem: This yields total time O(n+m·log m)
for any sequence of n calls, m of which are MakeSet

CS500 M. Ziegler
§4 Analysis of Union-by-Weight

MakeSet(x) FindSet(x) Union(x,y)

Theorem: This yields total time O(n+m·log m)
for any sequence of n calls, m of which are MakeSet

Observation: An element's link is updated only when
its set is combined with one of more or equal weight.

So to any of the ≤m possible elements x, kupdates

occur only after having made m ≥ 2k calls to MakeSet

Weighted union heuristic: attach smaller to larger tree

x

MakeSet, FindSet: O(1) , Union ?

4 4

CS500 M. Ziegler
Lazy Union by Rank, Path Compression

Theorem: This algorithm makes m MakeSet and n-m
FindSet and Union calls run in total time O(n·log*m).O(n·α(m)).

Lazy Union-by-rank: attach shallower to deeper tree

Naive implementation as forest of unbounded depth:

0 0

1 1

0 0 0

2 2

00

1 1

3

1

MakeSet, Union: O(1) , FindSet ? Path compression

function FindSet(x): if x.parent≠NIL

then x.parent := FindSet(x.parent);

return(x.parent);

Union(x,y) //x,y handles
if y.rank > x.rank
then attach x to y

else attach y to x;
if x.rank = y.rank
then x.rank++; fi; fi;

CS500 M. Ziegler
Amortized Analysis of Union-Find

Claim a) Ranks increase
strictly along each path.

0
1
2,3

4..15

B..2B-1

2B..22B
-1

log*m
blocks

of ranks

rank

b) Any node of rank r
is ancester to ≥2r nodes.

c) No more than m/2r

nodes can have rank≥r

FindSet(x) Union(x,y)

Total #steps from all
nodes to their root(s)

= #links transcending block(s) + #links within a block

≤≤mm linkslinks

Theorem: This algorithm makes m MakeSet and n-m
FindSet and Union calls run in total time O(n·log*m).

CS500 M. Ziegler
Review of Chapters 1 to 4
• Virtues of Theoretical Computer Science:

• full and unambiguous problem specification

• formal semantics of primitive operations

• algorithm design (as opposed to 'programming')

• and analysis (correctness, asymptotic cost)

• optimality proof

• Stable Matchings and Gale-Shapley Algorithm

• AVL-Trees, Binomial Heaps

• Amortized Analysis, Potential Method

• Fibonacci Heaps, Relaxed Binomial Trees

• Fast/Slowly Growing Functions

• Union-Find Algorithm&Analysis

