§5 Intermission: Complexity Theory

Def: binary *length* of $x \in \mathbb{N}$ is $\ell(x) := \lceil \log_2(x+1) \rceil + 1$

- time=#steps of an algorithm on input $\underline{x} = (x_1, ..., x_k)$
- space (=memory): $\max_{t} \ell(y_{1,t},...,y_{m,t})$, \underline{y} registers
- worst-case over all inputs x with $\ell(x) < n$

Def: For decision problems $L \subseteq \mathbb{N}^*$ or $\subseteq \{0,1\}^*$

- $\mathcal{P} = \{ L \text{ decidable in polynomial time } \}$
- $\mathcal{NP} = \{ L \text{ verifiable in polynomial time } \}$, i.e.

 $L = \{ \underline{x} \in \mathbb{N}^* : \exists \underline{y} \in \mathbb{N}^*, \ \ell(\underline{y}) \leq \operatorname{poly}(\ell(\underline{x})), \ (\underline{x},\underline{y}) \in V \}, \ V \in \mathcal{P} \}$

- $PSPACE = \{ L \text{ decidable in polynomial space } \}$
- $\mathcal{EXP} = \{ L \text{ decidable in exponential time } \}$

Theorem: $P \subseteq \mathcal{NP} \subseteq PSPACE \subseteq \mathcal{EXP}$

Example Decision Problems I

In an undirected graph *G*, Eulerian cycle traverses each <u>edge</u> precisely once;

Hamiltonian cycle visits each <u>vertex</u> precisely once.

G admitting a Eulerian cycle is connected and

save isolated vertices

has an even number of edges incident to each vertex

Theorem: Conversely every connected graph with an even number of edges incident to each vertex admits a Eulerian cycle.

 $\mathbf{EC} := \{ \langle G \rangle \mid G \text{ has a Eulerian cycle} \} \qquad \mathcal{NP}$

 $\mathbf{HC} := \{ \langle G \rangle \mid G \text{ has Hamiltonian cycle} \} \mathcal{NP}$

Example Decision Problems II

Eulerian (EC) vs. Hamiltonian Cycle (HC)

* (Minimum) **Edge Cover** p "To graph G, find a smallest subset F of edges s.t. any vertex v is adjacent to at least one $e \in F$."

vs. Vertex Cover (VC) \(\mathcal{VC} \) Greedily extend a maximum matching

• CLIQUE = { $\langle G, k \rangle \mid G$ contains a k-clique

• $\mathbf{IS} = \{\langle G, k \rangle : G \text{ has } k \text{ pairwise non-adjacent vertices} \}$

Integer Linear Programming MP ?

 $\mathbf{ILP} = \{ \langle \underline{A}, \underline{b} \rangle : \underline{A} \in \mathbb{Z}^{n \times m}, \, \underline{b} \in \mathbb{Z}^m, \, \exists \underline{x} \in \mathbb{Z}^n : \underline{A} \cdot \underline{x} = \underline{b} \}$

 $\mathbf{VC} = \{ \langle V, E, k \rangle : \exists U \subseteq V, | U/=k, \forall (x,y) \in E : x \in U \lor y \in U \} \}$ $\mathcal{NP} \ni \{ x \in \mathbb{N} : \exists y, \ \ell(y) \leq \operatorname{poly}(\ell(x)), \ \langle x, y \rangle \in V \}, \ V \in \mathcal{P}$

Comparing Decision Problems

CLIQUE = $\{ \langle G, k \rangle \mid G \text{ contains a } k\text{-clique} \}$ \mathbf{E}_{p} IS= $\{ \langle G, k \rangle : G \text{ has } k \text{ pairwise non-connected vertices} \}$

For $L,L'\subseteq\mathbb{N}^*$ write $L\leqslant_{\mathsf{p}}L'$ if exists a polynomial-time computable $f:\mathbb{N}^*\to\mathbb{N}^*$ such that $\forall\underline{x}: \underline{x}\in L \iff f(\underline{x})\in L'$ Lemma: a) $L'\in\mathcal{P}\Rightarrow L\in\mathcal{P}$ b) $L\leqslant_{\mathsf{p}}L'\leqslant_{\mathsf{p}}L''\Rightarrow L\leqslant_{\mathsf{p}}L''$

Reduction IS \leq_{D} SAT

Goal: Upon input of (the encoding of) a graph G and $k \in \mathbb{N}$, produce in polynomial time a CNF formula Φ such that: Φ satisfiable iff G contains $\geq k$ independent vertices

Let G consist of vertices $V=\{1,...,n\}$ and edges E.

- Consider Boolean variables $x_{v,i}$, $v \in V$, i=1...kVertex *v* is #*i* among the *k* independent. There is an i-th vertex
- and clauses $K_i := \bigvee_{v \in V} x_{v,i}$, i=1...k Vertex v cannot
- and $\neg x_{v,i} \lor \neg x_{v,j}$, $v \in V$, $1 \le i < j \le k$
- and $\neg x_{u,i} \lor \neg x_{v,j}$, $\{u,v\} \in E$, $1 \le i < j \le k$
- Length of Φ : $O(k \cdot n + n \cdot k^2 + n^2 k^2) = O(n^2 k^2)$ independent.
- be both #i and #j. No adjacent vertices are
- Computational cost of $(G,k) \to \Phi$: polyn. in $n+\log k$

Example Reduction: 4SAT vs. 3SAT KAIST CS500 M. Ziegler

4-SAT: Is formula $\Phi(Y)$ in 4-CNF satisfiable? **3-SAT**: Is formula $\Phi(\underline{Y})$ in 3-CNF satisfiable?

Given $\Phi = (a \lor b \lor c \lor d) \land (p \lor q \lor r \lor s) \land ...$ variables. with literals a,b,c,d, p,q,r,s,.... possibly negated

Introduce new variables u,v,... and consider

 $\Phi' := (a \lor b \lor u) \land (\neg u \lor c \lor d)$ $f: \langle \Phi \rangle \rightarrow \langle \Phi' \rangle$ $\land (p \lor q \lor v) \land (\neg v \lor v \lor r \lor s) \land ...$

For $L,L'\subseteq\mathbb{N}$ write $L\leqslant L'$ if exists a computable $f: \mathbb{N} \to \mathbb{N}$ such that $\forall \underline{x}: \underline{x} \in L \iff f(\underline{x}) \in L'$.