§6 Randomization: Motivation

Simple polyn.-time decision whether a (not necessarily bipartite nor planar) graph admits a perfect matching.

Let x_{ij} , $1 \le i < j \le n$, denote variables and consider Tutte's skew-symmetric *symbolic* matrix A_G with entries a_{ij} := x_{ij} if $\{i,j\} \in E$ and i < j

 a_{ij} :=- x_{ji} if $\{i,j\}\in E$ and i>j a_{ij} := 0 otherwise.

 $\det(A_G) = \sum_{\pi} \operatorname{sign}(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}$

- is an n^2 -variate integer polynomial of total degree n
- that can be evaluated using $O(n^3)$ tests & arith. op.s
- <u>is identically zero iff G has no perfect matching!</u>

Recall: A perfect matching in a graph G=(V,E) of |V|=2n vertices is a set $M\subseteq E$ of n edges without common vertices.

Lemma on Tutte's Determinant

 $\det(A_G) = \sum_{\pi} \operatorname{sign}(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}$ is identically zero iff G has no perfect matching!

$$a_{ij}$$
:= x_{ij} if $\{i,j\} \in E$ and $i < j$
 a_{ij} :=- x_{ji} if $\{i,j\} \in E$ and $i > j$
 a_{ij} := 0 otherwise.

Proof ' \Rightarrow ' A perfect matching is a permutation $\mu: V \to V$ s.t. $\forall i: \{i, \mu(i)\} \in E$ (*) and all cycles have length 2. Set $x_{i,\mu(i)} := 1$, $x_{ij} := 0$ for $j \neq \mu(i)$. Then $\det(A_G)(\underline{x}) = 1$ (why?)

' \Leftarrow ' Let $\det(A_G) = \sum'_{\pi \text{ has odd cycle}} + \sum''_{\pi \text{ only of even cycles}}$ Then $\sum'_{\pi} \equiv 0$. Let π consist of only even cycles s.t. (*). This gives rise to a perfect matching.

Recap: symmetry, cycle decompos., multivar. polyn.

Polynomial Identity Testing

 $\det(A_G) = \sum_{\pi} \operatorname{sign}(\pi) \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot a_{3,\pi(3)} \cdots a_{n,\pi(n)}$

- is identically zero iff *G* has *no* perfect matching;
- ullet is an n^2 -variate integer polynomial of total degree n
- that can be evaluated using $O(n^3)$ tests & arith. op.s

Recap (by example): The *total degree* of $x^2 \cdot y^3$ is 5. Univariate polynom. of degree d has (at most) d roots.

Lemma (*Schwartz-Zippel*): Fix domain D, finite $S \subseteq D$, and let $0 \neq p \in D[x_1, ..., x_n]$ have total degree $\leq d$. Sample $r_1, \dots r_n$ from S independently uniformly at random (*iid*).

Then (*) Pr [$p(r_1,...r_n)=0$] $\leq d/|S|$. Let j max s.t. $p_j\neq 0$ **Proof (induct):** $0 \neq p(x_1,...x_n) = \sum_{0 \le i \le d} p_i(x_1,...x_{n-1}) \cdot x_n^{-j}$ (*) $\leq \Pr[p_i(r_1,...r_{n-1})=0] + \Pr[p(r_1,...r_n)=0 \mid p_j(r_1,...r_{n-1})\neq 0]$

Markov Chain Algorithm for 3SAT KAIST

- 1-sided error: Suppose z is a satisfying assignment
- and \underline{y} guessed in line 3 differs from \underline{z} at $\leq k$ places.
- After one iteration of innermost loop (lines 5 to 8):
- With probability $\ge \frac{1}{3}$ differs y only at $\le k-1$ places.
- Loop arrives at <u>y=z</u> with probability $\geq (\frac{1}{3})^k$.
- Naïve choice k := n/2 and $K := 3^k$.
- Better k := n/4 and $K := 3^k \cdot 2^n / (n_k) \approx (1.5)^n$
- Current record *k*:=3*n* and $K := (4/3^n)$

runtime $(1.33)^n \cdot poly(n)$

- 1 Given 3CNF term $\varphi(x_1,...,x_n)$
- 2 Repeat *K* times:
- Guess assignment $y \in \{0,1\}^n$
- Repeat *k* times:
- If $\varphi(y)=1$, accept and stop.
- 6 C be 1st clause in φ st C(y)=0
- Guess a literal in C (1 of 3), 7
 - flip its assigned value in y.
- 9 Reject! $1/\binom{n}{cn} \approx c^{cn} \cdot (1-c)^{(1-c)n}$