

Prof. Dr. Martin Ziegler + 82-42-350-3568

CS500 July 1st, 2016 PhD Qualifying Exam

ziegler@kaist.ac.kr http://m.zie.de

Please write your name and student ID here	
as well as on each additional sheet of paper you use!	100 points = 100%
Problem 1 (5+5+5+5 points):	
a) Which of the following* are <i>sound</i> measures of algorithmic cost?	
□ software licence fee/purchase cost	
□ programmers' salaries	
□ runtime (#CPU seconds)	
□ runtime (#steps)	
☐ asymptotic (big-O) #steps	
☐ asymptotic memory consumption (#bits)	
☐ asymptotic communication volume (#bits)	
☐ asymptotic #processors · #parallel steps	
□ energy consumption (#kWh)	
□ #bugs	
b) Which of the following* are <i>sound</i> notions of an algorithm's performa	ance?
□ worst-case	
□ best-case	
□ typical case	
□ average-case [†]	
☐ in practice	
\square on a benchmark	
☐ amortized	
□ expected (for randomized algorithms)	
☐ accuracy (for approximation algorithms)	
☐ competitive (for online algorithms)	
c) Explain the differences between (i) a program, (ii) an algorithm, and	(iii) a heuristic.
d) Explain the difference between (i) algorithmic cost and (ii) computat	ional complexity.

 $^{^*}$ Check your multiple choice answers on this paper: $\frac{1}{2}$ point for each correct, 0 for each incorrect

[†] with respect to a certain probability distribution on the space of inputs...

Problem 2 (5+5+5+5 points):

- a) Specify (!) and describe three *significantly* different algorithms for sorting *n* given keys, together with their asymptotic computational worst-case costs. (No proofs required.)
- **b)** Asymptotically analyze the (#arithmetic operations used by the) high-school method (a.k.a. long multiplication) for calculating, given the coefficients $a_0,...,a_n$ and $b_0,...,b_n$ of univariate polynomials $A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + ... + a_n \cdot x^n$ and $B(x) = b_0 + b_1 \cdot x + b_2 \cdot x^2 + ... + b_n \cdot x^n$, determine the coefficients $c_0,...,c_{2n}$ of their product polynomial $C(x) := A(x) \cdot B(x)$.
- c) Verify the correctness of the following formula. Describe a recursive algorithm based on it for the problem from b). $(A_0(x) + A_1(x) \cdot x^n) \cdot (B_0(x) + B_1(x) \cdot x^n) = C_0(x) + C_1(x) \cdot x^n + C_2(x) \cdot x^{2n},$ where $C_0(x) := A_0(x) \cdot B_0(x)$, $C_2(x) := A_1(x) \cdot B_1(x)$, and $C_1(x) := (A_0(x) + A_1(x)) \cdot (B_0(x) + B_1(x)) C_0(x) C_2(x)$

d) Analyze the asymptotic runtime (=#arithmetic operations) of your algorithm from c).

Problem 3 (10x 2 points): Match[‡] the algorithms/problems on the left to their least (known) among the classes of asymptotic worst-case runtime/time complexity to the right:

Binary search among <i>n</i> sorted elements •	\bullet $O(\log^2 n)$
Comparison-based sorting •	
Connectedness of a given graph •	\bullet $O(\sqrt{n})$
Vertex Cover (Problem 5) •	• O(n)
Edge Cover: Given a graph $G=(V,E)$ and $k \in \mathbb{N}$, do	
there exist edges $e_1,,e_k \in E$ s.t. every vertex $v \in V$	- 0(1 2)
belongs to some $e \in \{e_1,, e_k\}$?	$\bullet O(n \cdot \log^2 n)$
Minimum Spanning Tree of a given connected graph with n vertices and $O(n)$ edges •	$ O(n^2 \cdot \log^2 n) $
Multiplication of two $n \times n$ matrices of entries 0,1 \bullet	$ O(n^3 \cdot \log^2 n) $
Syntax test (parsing) w.r.t. a regular grammar •	
Syntax test w.r.t. a context-free grammar •	₽
Searching a given string of length n for the	4.40
occurrence of a given substring of length $O(n)$ •	• NP

[‡] Draw your answers on this paper: 2 points for each correct line, 0 for each missing/incorrect one

Problem 4 (5+5+5+5 points):

- a) What is the asymptotic (i) worst-case and (ii) amortized cost of incrementing a binary counter, when each bit-flip counts as one step? (No proof is required here...)
- **b)** Prove your second claim from **a)**.
- c) Determine the *average* cost of the following fun algorithm, asymptotically as $n \to \infty$:

 Given a tuple $(b_1, ..., b_n)$ of n bits, search the (index j of the)

 first non-zero bit b_j ; in case all b_j are zero, count to 2^n-1 and stop.
- **d)** What is the (i) *worst* and (ii) *expected* cost of the following randomized 'algorithm': Flip a coin. If it comes out *heads*, stop; otherwise repeat.

Hint: It holds $\sum_{n} n \cdot p^{n} = p/(1-p)^{2}$ for all |p| < 1.

Problem 5 (5+5+5+5 points): Recall that $Vertex\ Cover$ is the following optimization problem: Given an undirected graph G=(V,E), find the least number k=k(G) of vertices $v_1,\ldots,v_k\in V$ such that every edge $e\in E$ is incident to (i.e. has among its two end points) at least one vertex from the set $C=\{v_1,\ldots,v_k\}$. The corresponding decision problem asks whether, given G and ℓ , it holds $k(G)\leq \ell$.

- a) Determine k(G) and an optimal *Vertex Cover* for the following graph G:
- **b)** Consider the following greedy algorithm, initialized with $C=\{\}=F$:

WHILE there exists an edge $e = \{a,b\} \in E$, add e to F and both its end points a,b to C and remove from E all edges incident to a or b.

Prove that the resulting set C constitutes a vertex cover of size $2 \cdot |F| \le 2 \cdot k(G)$, i.e. a 2-approximation.

- c) Prove that the analysis in b) is optimal by constructing (a family of) graphs G where the above algorithm produces a vertex cover of size $2 \cdot k(G)$.
- **d)** Will the following variant of **b)** also yield a vertex cover and which approximation ratio? For each edge $e=\{a,b\}\in E$ add only *one* (arbitrary) of its end points to C and remove from E all edges incident to that vertex.

Justify your answers!