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Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

A polynomial function f(z) = O(n”) for some constant k.

o O(n*) vs. O(2™): 2™ will be eventually bigger

If an algorithm A has a running time O(2")...

o n=100= 2'% > 10" is already too large

An algorithm A is efficient if it runs in polynomial time.

o 1001190 ys, 20.0ln 7
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Class P and NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.
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Nondeterminism

Now we consider a program with multiple execution paths.

The program makes a

/ l \ choice for each branch

Q nondeterministically.
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number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
true iff there is a divisor!
= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.

2. Return true if the chosen vertex set covers all edges.
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e NP is the class of decision problems that have efficient
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Nondeterminism and Certifier

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

If a nondeterministic algorithm returns true for an instance Z,
there exists an execution path that accepts 7!

The algorithm can be viewed as a certifier A(s,t) that returns
true for s given a proper certificate t.
e NP is the class of decision problems that have efficient
certifiers.
A(s,t) is an efficient certifier for a problem if A € P and
there is a polynomial p s.t. s is a YES-instance iff there is a
certificate ¢ satisfying followings:
L. [t] < p(]s])
2. A(s,t) = true
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Examples Revisited

COMPOSITE: given an integer n, decide if n is a composite

number. - _ o
The certificate is a divisor of n.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
The certifier verifies if 2 divides n. true iff there is a divisor!

= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.
2. Return true if chosen vertex set covers all edges.
The certificate is a subset of V(G) of size k;
[ - 3 the certifier verifies it is a vertex cover.
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P vs. NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

= P C NP.

e Every efficient algorithm (€ P) is in NP.

e COMPOSITE € P.

e VERTEXCOVER ¢ P if P # NP
= VERTEXCOVER is really hard.

o P#ANP?7
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Suppose A < B.

1. Ais at least as easy as B.

2. B is at least as hard as A.
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Reduction

e Cook reduction: A is Turing reducible to B if A can be
efficiently solvable given an oracle for B.

REALSORTING <7 HALTING: Real numbers can be
efficiently sorted given an oracle for HALTING.

SELECTION <7 SORTING: m-th largest number can be
efficiently selected given an oracle for Sorting.
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has a vertex cover of size k.
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VERTEXCOVER < INDEPENDENTSET

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

S C V(@) is an independent set for a graph G if there are no
adjacent vertices in S.

INDEPENDENTSET: given a graph GG and integer k, decide if
(G has an independent set of size k.

Observation: S is a vertex cover iff V(G) \ S is an
independent set.

An instance (G, k) of VERTEXCOVER can be converted into

an instance (G, |V (G)| — k) of INDEPENDENTSET.
10 - 4
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e A problem A is NP-hard if A is at least as hard as any NP
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That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

o CSAT < 3SAT < VERTEXCOVER < INDEPENDENTSET

e There are plenty of known NP-complete problems!
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A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

12 -1



CSAT is NP-complete

A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

y = (21 Va2) A (mz3 V (22 A 23))

OR
. AND
AND
OR
3 NOT

12 - 2



CSAT is NP-complete

A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

y = (21 Va2) A (mz3 V (22 A 23))

OR
N AND
2 AND
OR
3 NOT

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?
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CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.
1. CSAT € NP.

Certificate: an assignment for input variables

Certifier: verify that the output value is true
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CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.
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assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.
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2. X < CSAT for every NP problem X.
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s is a YES-instance for X iff there is a certificate ¢ of
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CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

Convert A into a circuit for CSAT.

ldea: Any turing machine can be imitated by a circuit!
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CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

Convert A into a circuit for CSAT.

Fill in input values for s and leave t.

12 - 11
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Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

e If M terminates in t(n) steps, then it uses at most t(n)
space.

e The contents of a cell in step 7 + 1 depends only on k£ = 3

cells and the state of M in step 7.
|QQ] = number of states, |X| = number of alphabets

= simulated by O(|Q||X])* (= O(1) wrt n) gates.
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Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

e If M terminates in t(n) steps, then it uses at most t(n)
space.

e The contents of a cell in step 7 + 1 depends only on k£ = 3

cells and the state of M in step 7.
|QQ] = number of states, |X| = number of alphabets

= simulated by O(|Q||X])* (= O(1) wrt n) gates.

e There are t(n) x t(n) cells to compute.
= a circuit of size O(t*(n)).

13-4



Class P and NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

e NP is the class of decision problems that have efficient
certifiers.

A(s,t) is an efficient certifier for a problem if A € P and
there is a polynomial p s.t. s is a YES-instance iff there is a
certificate t satisfying followings:

L. |t] < p(]s])
2. A(s,t) = true
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NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

o CSAT < 3SAT < VERTEXCOVER < INDEPENDENTSET

e There are plenty of known NP-complete problems!
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
e 1 is a binary variable.

e A literal [ is either x or —z.

e A CNF formula ¢ — Cl /\ 02 JANKICN Ck; where
C; = 1;1 Vi Vi3 for literals ZZJ
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Theorem. 3SAT is NP-complete.
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.
1. 3SAT € NP.

3SAT < CSAT (special case)

3-5



3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.

We know that CSAT is NP-hard.
= CSAT < 3SAT is sufficient.
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For each gate, make a variable for its output and simulate
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

1) NOT gate
Input value: x; / Output value: z; = —x;

S (.CCZ V CIS’j) A (—IZIZ?; V ﬁij)
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

2) AND gate
Input value: x;,x; / Output value: z; = x; A x;

& (—xp V) A (—xg Vo) A(zg V-ox; V-oxg)
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

3) OR gate
Input value: x;,x; / Output value: z, = x; V x,

& (z Vxg) Az Vxg) A (—zg Va; Vo)
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

4) To make some input variable x; true/false, add x; / —x;



3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

5) Replace clauses with 1 or 2 varibles
xi\/ilij = (SIZZ'\/ZUJ' \/Z)/\(CIZ‘Z'\/.CUJ' \/_IZ)

x; < (x;VzVw)A(z;VazVw)A(z; VzV-w)A(x; V-ozV-w)
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3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

Claim: C' is satisfiable iff ¢¢ is satisfiable.



VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.
1. VERTEXCOVER € NP.
2. 3SAT < VERTEXCOVER
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VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.
1) Variable gadget

For each variable z,
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VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.

2) Clause gadget
For each clause C' =11 V iy VI3, @ @
&) @@ O
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VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.

Claim: ¢ is satisfiable iff G4 has a vertex cover of size
m + 2k.

4 - 4



SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?



SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

e.g. X ={1,1,5,10,23,30}, s = 39
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SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

e.g. X ={1,1,5,10,23,30},s =39 YES! {1,5, 10,23}
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SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.
1. SUBSETSUM € NP
2. 3SAT < SUBSETSUM



SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

1. SUBSETSUM &€ NP

Certificate: a set of integers Y

Certifer: 1) Y is a subset of X and 2) sum of Y equals to s
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SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM

Let ¢ be a 3-CNF with m variables and £ clauses.
Construct integers t;, f; of m + k digits for each variable x;
Construct integers a;,b; of m + k digits for each clause C}

m digits correspond to T'/F assignment for each variable.

ti, f; have 1 for i-th digit.
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SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM

Let ¢ be a 3-CNF with m variables and £ clauses.
Construct integers t;, f; of m + k digits for each variable x;
Construct integers a;,b; of m + k digits for each clause C}
k digits correspond to satisfiability for each clause.

ti/ fi has 1 for (m + j)-th digit if z;/—x; appear in C}.

a; = b; have 1 for (m + j)-th digit.
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SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM
Let ¢ be a 3-CNF with m variables and £ clauses.

Claim: ¢ is satisfiable iff there is a subset of
{tlaflv"' 7tmafm7a17b17”' 7akabk} of sum:

—

m k
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DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lwz) V I3



DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 AN WA 563) V (_'5131 /N\ _lmz) V —x3
e 1 is a binary variable.

e A literal [ is either x or —z.

e A DNF formula ¢ = Cl V CQ Voees Ck where
Ci, =li Nljo--- N lzkz for literals Z’LJ
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DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lmz) V I3
e DNF-SAT € P.
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DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lmz) V I3
e DNF-SAT € P.
e 3SAT < DNF-SAT



DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

e.g ¢=(r1 Nzoa ANx3)V (—x1 A—22) V X3
e DNF-SAT € P.
o 3SAT < DNF-SAT
Let ¢ be a 3-CNF with m variables and k clauses.
We can convert CNF into DNF as follows:

(aVbVe)AN(dVeV f)
=(and)V(ane)V(aNf)VbAA)V(bAe)V (DA )V
(cANd)V(cANe)V(cAf)
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DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

e.g ¢=(r1 Nzoa ANx3)V (—x1 A—22) V X3
e DNF-SAT € P.
o 3SAT < DNF-SAT
Let ¢ be a 3-CNF with m variables and k clauses.
We can convert CNF into DNF as follows:

(aVbVe)AN(dVeV f)
=(and)V(ane)V(aNf)VbAA)V(bAe)V (DA )V
(cANd)V(cANe)V(cAf)

NOT a polynomial-time reduction!
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