Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

1-1

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

1-2

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

A polynomial function f(z) = O(n”) for some constant k.

o O(n*) vs. O(2™): 2™ will be eventually bigger

1-4

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

A polynomial function f(z) = O(n”) for some constant k.

o O(n*) vs. O(2™): 2™ will be eventually bigger

If an algorithm A has a running time O(2")...

o n=100= 2'% > 10" is already too large

1-5

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

A polynomial function f(z) = O(n”) for some constant k.

o O(n*) vs. O(2™): 2™ will be eventually bigger

If an algorithm A has a running time O(2")...

o n=100= 2'% > 10" is already too large

An algorithm A is efficient if it runs in polynomial time.

Asymptotic Notation and Growth
f(x) = O(g(x)) iff f(x) < cg(x) for a constant ¢ and large x

e Different models of computation

e O(n?) vs. O(n?): n® will be eventually bigger than 100n?

A polynomial function f(z) = O(n”) for some constant k.

o O(n*) vs. O(2™): 2™ will be eventually bigger

If an algorithm A has a running time O(2")...

o n=100= 2'% > 10" is already too large

An algorithm A is efficient if it runs in polynomial time.

o 1001190 ys, 20.0ln 7

1-7

-1

Computability and Complexity

PSPACE
complete

PSPAC
CH

#P
PH

2 -2

Computability and Complexity

(Decision) Problems
Decidable

2-3

Computability and Complexity

(Decision) Problems

Decidable

-

— HALTING

Computability and Complexity

(Decision) Problems

Decidable

PSPACE
complete

-

— HALTING

2-5

Computability and Complexity

(Decision) Problems

Decidable

PSPACE
complete

-

— HALTING

2-6

Computability and Complexity

(Decision) Problems

Decidable

PSPACE
complete

-

— HALTING

Computability and Complexity

(Decision) Problems

Decidable

-

— HALTING

CO(nk)

PSPACE
complete

Class P and NP

e P is the class of decision problems that can be solved in
Polynomial time.

Class P and NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

3-2

4 _

1

Nondeterminism

O«—0O0O+—0+—0-0

Accept or Reject

Nondeterminism

Now we consider a program with multiple execution paths.

O
1N

>
g

O O O

Yvov v

OO O OO0

Yvov

O O ? O
O

i.2 O

O
O

Nondeterminism

Now we consider a program with multiple execution paths.

The program makes a

/ l \ choice for each branch

nondeterministically.

~— O
g

Y

O O

AN
~— OO0
O-—0O

O
O
O«—0O-—0-0

.3 OO0

Nondeterminism

Now we consider a program with multiple execution paths.

The program makes a

/ l \ choice for each branch

Q nondeterministically.

'\
O O

l The program returns
O true iff one of final
states accepts!

AN
— O—0

AN

O
O
O«—0O-—0-0

.2 OO0

Examples

COMPOSITE: given an integer n, decide if n is a composite
number.

Examples

COMPOSITE: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if ¢ divides n.

-2

Examples

COMPOSITE: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
true iff there is a divisor!
= COMPOSITE € NP

5-3

Examples

COMPOSITE: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
true iff there is a divisor!
= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

Examples

COMPOSITE: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
true iff there is a divisor!
= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.

2. Return true if the chosen vertex set covers all edges.

5-5

Nondeterminism and Certifier

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

If a nondeterministic algorithm returns true for an instance Z,
there exists an execution path that accepts 7!

Nondeterminism and Certifier

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

If a nondeterministic algorithm returns true for an instance Z,
there exists an execution path that accepts 7!

The algorithm can be viewed as a certifier A(s,t) that returns
true for s given a proper certificate t.

e NP is the class of decision problems that have efficient
certifiers.

6 -2

Nondeterminism and Certifier

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

If a nondeterministic algorithm returns true for an instance Z,
there exists an execution path that accepts 7!

The algorithm can be viewed as a certifier A(s,t) that returns
true for s given a proper certificate t.
e NP is the class of decision problems that have efficient
certifiers.
A(s,t) is an efficient certifier for a problem if A € P and
there is a polynomial p s.t. s is a YES-instance iff there is a
certificate ¢ satisfying followings:
L. [t] < p(]s])
2. A(s,t) = true
6-3

Examples Revisited

COMPOSITE: given an integer n, decide if n is a composite
number.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
true iff there is a divisor!
= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.
2. Return true if chosen vertex set covers all edges.

/-1

Examples Revisited

COMPOSITE: given an integer n, decide if n is a composite

number. - _ o
The certificate is a divisor of n.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
The certifier verifies if 2 divides n. true iff there is a divisor!

= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.
2. Return true if chosen vertex set covers all edges.

(-2

Examples Revisited

COMPOSITE: given an integer n, decide if n is a composite

number. - _ o
The certificate is a divisor of n.

1. Choose an integer 1 < ¢ < n nondeterministically.

2. Return true if 7 divides n. The program returns
The certifier verifies if 2 divides n. true iff there is a divisor!

= COMPOSITE € NP

S C V(QG) is a vertex cover for a graph G if every edge of G is
Incident to at least one vertex of S.

VERTEXCOVER: given a graph G and integer k, decide if G
has a vertex cover of size k.

1. Choose k vertices nondeterministically.
2. Return true if chosen vertex set covers all edges.
The certificate is a subset of V(G) of size k;
[- 3 the certifier verifies it is a vertex cover.

P vs. NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

= P C NP.

P vs. NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

= P C NP.

e Every efficient algorithm (€ P) is in NP.

8 -2

P vs. NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

= P C NP.

e Every efficient algorithm (€ P) is in NP.

e COMPOSITE € P.

e VERTEXCOVER ¢ P if P # NP
= VERTEXCOVER is really hard.

8-3

P vs. NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

= P C NP.

e Every efficient algorithm (€ P) is in NP.

e COMPOSITE € P.

e VERTEXCOVER ¢ P if P # NP
= VERTEXCOVER is really hard.

o P#ANP?7

8- 4

Reduction
Suppose A < B.

1. Ais at least as easy as B.

Reduction
Suppose A < B.

1. Ais at least as easy as B.

2. B is at least as hard as A.

9-2

Reduction

e Cook reduction: A is Turing reducible to B if A can be
efficiently solvable given an oracle for B.

9-3

Reduction

e Cook reduction: A is Turing reducible to B if A can be
efficiently solvable given an oracle for B.

REALSORTING <7 HALTING: Real numbers can be
efficiently sorted given an oracle for HALTING.

Reduction

e Cook reduction: A is Turing reducible to B if A can be
efficiently solvable given an oracle for B.

REALSORTING <7 HALTING: Real numbers can be
efficiently sorted given an oracle for HALTING.

SELECTION <7 SORTING: m-th largest number can be
efficiently selected given an oracle for Sorting.

9-5

Reduction

e Karp reduction: A is many-one reducible to B if an

instance of A can be efficiently converted into an instance
of B.

9-6

Reduction

e Karp reduction: A is many-one reducible to B if an
instance of A can be efficiently converted into an instance

of B.

VERTEXCOVER <,,, INDEPENDENTSET: If we know
VERTEXCOVER is hard, INDEPENDENTSET is hard, too!

VERTEXCOVER < INDEPENDENTSET

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

10-1

VERTEXCOVER < INDEPENDENTSET

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

S C V(@) is an independent set for a graph G if there are no
adjacent vertices in S.

INDEPENDENTSET: given a graph GG and integer k, decide if
(G has an independent set of size k.

10 - 2

VERTEXCOVER < INDEPENDENTSET

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

S C V(@) is an independent set for a graph G if there are no
adjacent vertices in S.

INDEPENDENTSET: given a graph GG and integer k, decide if
(G has an independent set of size k.

Observation: S is a vertex cover iff V(G) \ S is an
independent set.

10 - 3

VERTEXCOVER < INDEPENDENTSET

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

S C V(@) is an independent set for a graph G if there are no
adjacent vertices in S.

INDEPENDENTSET: given a graph GG and integer k, decide if
(G has an independent set of size k.

Observation: S is a vertex cover iff V(G) \ S is an
independent set.

An instance (G, k) of VERTEXCOVER can be converted into

an instance (G, |V (G)| — k) of INDEPENDENTSET.
10 - 4

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

11-1

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

11-2

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

11-3

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

o CSAT < 3SAT < VERTEXCOVER < INDEPENDENTSET

11-4

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

o CSAT < 3SAT < VERTEXCOVER < INDEPENDENTSET

e There are plenty of known NP-complete problems!

11-5

CSAT is NP-complete

A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

12 -1

CSAT is NP-complete

A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

y = (21 Va2) A (mz3 V (22 A 23))

OR
. AND
AND
OR
3 NOT

12 - 2

CSAT is NP-complete

A circuit consists of input (binary) variables, AND, OR, and
NOT gates, and an output (binary) value.

y = (21 Va2) A (mz3 V (22 A 23))

OR
N AND
2 AND
OR
3 NOT

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

12 - 3

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

12 -4

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.
1. CSAT € NP.
2. X < CSAT for every NP problem X.

12 -5

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.
1. CSAT € NP.

Certificate: an assignment for input variables

Certifier: verify that the output value is true

12-6

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

12 - 7

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

12 - 8

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

Convert A into a circuit for CSAT.

12-9

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

Convert A into a circuit for CSAT.

ldea: Any turing machine can be imitated by a circuit!

12 - 10

CSAT is NP-complete

CSAT: given a circuit C' with n input variables, is there an
assignment for variables that returns true?

Theorem. CSAT is NP-complete.

2. X < CSAT for every NP problem X.
Suppose X € NP. Let A be an efficient certifier for X.

s is a YES-instance for X iff there is a certificate ¢ of
size p(|s|) and A(s,t) = true.

Convert A into a circuit for CSAT.

Fill in input values for s and leave t.

12 - 11

Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

13-1

Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

e If M terminates in t(n) steps, then it uses at most t(n)
space.

13 -2

Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

e If M terminates in t(n) steps, then it uses at most t(n)
space.

e The contents of a cell in step 7 + 1 depends only on k£ = 3

cells and the state of M in step 7.
|QQ] = number of states, |X| = number of alphabets

= simulated by O(|Q||X])* (= O(1) wrt n) gates.

13-3

Constructing a Circuit

Lemma. If a turing machine M runs in time t(n), then we can
construct a circuit for M of size O(t(n)).

e If M terminates in t(n) steps, then it uses at most t(n)
space.

e The contents of a cell in step 7 + 1 depends only on k£ = 3

cells and the state of M in step 7.
|QQ] = number of states, |X| = number of alphabets

= simulated by O(|Q||X])* (= O(1) wrt n) gates.

e There are t(n) x t(n) cells to compute.
= a circuit of size O(t*(n)).

13-4

Class P and NP

e P is the class of decision problems that can be solved in
Polynomial time.

e NP is the class of decision problems that can be solved in
Nondeterministic Polynomial time.

e NP is the class of decision problems that have efficient
certifiers.

A(s,t) is an efficient certifier for a problem if A € P and
there is a polynomial p s.t. s is a YES-instance iff there is a
certificate t satisfying followings:

L. |t] < p(]s])
2. A(s,t) = true

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

NP-hardness and NP-completeness

e A problem A is NP-hard if A is at least as hard as any NP
problem.

That is, for any NP problem B, B < A.

o A problem A is NP-complete if
1. A is NP-hard.
2. A e NP.

e CSAT is NP-complete.

o CSAT < 3SAT < VERTEXCOVER < INDEPENDENTSET

e There are plenty of known NP-complete problems!

2 -2

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
e 1 is a binary variable.

e A literal [is either x or —z.

e A CNF formula ¢ — Cl /\ 02 JANKICN Ck; where
C; = 1;1 Vi Vi3 for literals ZZJ

3-2

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

3-3

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.
1. 3SAT € NP.
2. X < 3SAT for every NP problem X.

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.
1. 3SAT € NP.

3SAT < CSAT (special case)

3-5

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.

We know that CSAT is NP-hard.
= CSAT < 3SAT is sufficient.

3-6

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

1) NOT gate
Input value: x; / Output value: z; = —x;

S (.CCZ V CIS’j) A (—IZIZ?; V ﬁij)
3-8

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

2) AND gate
Input value: x;,x; / Output value: z; = x; A x;

& (—xp V) A (—xg Vo) A(zg V-ox; V-oxg)
3-9

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

3) OR gate
Input value: x;,x; / Output value: z, = x; V x,

& (z Vxg) Az Vxg) A (—zg Va; Vo)
3-10

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?

eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

4) To make some input variable x; true/false, add x; / —x;

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

5) Replace clauses with 1 or 2 varibles
xi\/ilij = (SIZZ'\/ZUJ' \/Z)/\(CIZ‘Z'\/.CUJ' \/_IZ)

x; < (x;VzVw)A(z;VazVw)A(z; VzV-w)A(x; V-ozV-w)
3-12

3SAT is NP-complete
3SAT: Is a given 3-CNF formula satisfiable?
eg ¢d=(r1VraVez) A(-x1V-xoVas) A@sV-ozsVay)
Theorem. 3SAT is NP-complete.

2. X < 3SAT for every NP problem X.
Let C' be an instance of CSAT.

For each gate, make a variable for its output and simulate
the gate.

Claim: C' is satisfiable iff ¢¢ is satisfiable.

VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.
1. VERTEXCOVER € NP.
2. 3SAT < VERTEXCOVER

4-1

VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.
1) Variable gadget

For each variable z,

4.2

VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.

2) Clause gadget
For each clause C' =11 V iy VI3, @ @
&) @@ O

4 -3

VERTEXCOVER is NP-complete

S C V(G) is a vertex cover for a graph G if every edge of G is
incident to at least one vertex of S.

VERTEXCOVER: given a graph GG and integer k, decide if GG
has a vertex cover of size k.

Theorem. VERTEXCOVER is NP-complete.

2. 3SAT < VERTEXCOVER
Let ¢ be a 3-CNF with m variables and £ clauses.

Claim: ¢ is satisfiable iff G4 has a vertex cover of size
m + 2k.

4 - 4

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

e.g. X ={1,1,5,10,23,30}, s = 39

-2

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

e.g. X ={1,1,5,10,23,30},s =39 YES! {1,5, 10,23}

5-3

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.
1. SUBSETSUM € NP
2. 3SAT < SUBSETSUM

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

1. SUBSETSUM &€ NP

Certificate: a set of integers Y

Certifer: 1) Y is a subset of X and 2) sum of Y equals to s

5-5

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM

Let ¢ be a 3-CNF with m variables and £ clauses.
Construct integers t;, f; of m + k digits for each variable x;
Construct integers a;,b; of m + k digits for each clause C}

m digits correspond to T'/F assignment for each variable.

ti, f; have 1 for i-th digit.

b-6

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM

Let ¢ be a 3-CNF with m variables and £ clauses.
Construct integers t;, f; of m + k digits for each variable x;
Construct integers a;,b; of m + k digits for each clause C}
k digits correspond to satisfiability for each clause.

ti/ fi has 1 for (m + j)-th digit if z;/—x; appear in C}.

a; = b; have 1 for (m + j)-th digit.
5-7

SUBSETSUM is NP-complete

SUBSETSUM: given a (multi-)set X of integers and an integer
s, Is there a subset of X whose sum equals to s?

Theorem. SUBSETSUM is NP-complete.

2. 3SAT < SUBSETSUM
Let ¢ be a 3-CNF with m variables and £ clauses.

Claim: ¢ is satisfiable iff there is a subset of
{tlaflv"' 7tmafm7a17b17”' 7akabk} of sum:

—

m k

b-8

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lwz) V I3

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 AN WA 563) V (_'5131 /N\ _lmz) V —x3
e 1 is a binary variable.

e A literal [is either x or —z.

e A DNF formula ¢ = Cl V CQ Voees Ck where
Ci, =li Nljo--- N lzkz for literals Z’LJ

6 -2

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lmz) V I3
e DNF-SAT € P.

6-3

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

€.g. gb — (:131 N\ To N 563) V (_'5131 N\ _lmz) V I3
e DNF-SAT € P.
e 3SAT < DNF-SAT

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

e.g ¢=(r1 Nzoa ANx3)V (—x1 A—22) V X3
e DNF-SAT € P.
o 3SAT < DNF-SAT
Let ¢ be a 3-CNF with m variables and k clauses.
We can convert CNF into DNF as follows:

(aVbVe)AN(dVeV f)
=(and)V(ane)V(aNf)VbAA)V(bAe)V (DA)V
(cANd)V(cANe)V(cAf)

6-5

DNF-SAT
DNF-SAT: Is a given DNF formula satisfiable?

e.g ¢=(r1 Nzoa ANx3)V (—x1 A—22) V X3
e DNF-SAT € P.
o 3SAT < DNF-SAT
Let ¢ be a 3-CNF with m variables and k clauses.
We can convert CNF into DNF as follows:

(aVbVe)AN(dVeV f)
=(and)V(ane)V(aNf)VbAA)V(bAe)V (DA)V
(cANd)V(cANe)V(cAf)

NOT a polynomial-time reduction!

6-6

