II. Computability over the Reals

- real numbers: binary vs. approximate
- sequences, limits, rate of convergence
- function computability and continuity
- real arithmetic, join, maxim., integral
- root finding, argmax, derivative
- uncomputable wave equation
- analytic functions, discrete enrichment
- multivaluedness/non-extensionality: computability in linear algebra

Computable Real Numbers

Theorem: For $r \in \mathbb{R}$. Call $r \in \mathbb{R}$. computable if the following are equivalent:

There is an algorithm which, given $n \in \mathbb{N}$, prints $b_n \in \{0,1\}$ where $r = \sum_n b_n 2^{-n}$

- a) r has a computable binary expansion
- b) There is an algorithm printing, on input
- $m \in \mathbb{N}$, some $a_m \in \mathbb{Z}$ with $|r a_m/2^m| \le 1 \Leftrightarrow r \in \mathbb{Z}$ c) There is an algorithm printing two $[q_n \pm \varepsilon_n]$
 - sequences $(q_n) \subseteq \mathbb{Q}$ and (ε_n) with $|r q_n| \leq \varepsilon_n \rightarrow 0$

numerators+ $(b) \Leftrightarrow c)$ holds *uniformly*, denominators \Leftrightarrow a) does not [Turing'37]

arithmetic

Ernst Specker (1949): (c) \Leftrightarrow Halting problem plus (d) d) There is an algorithm printing $(q_n)\subseteq \mathbb{Q}$ with $q_n \rightarrow r$.

 $H := \{ \langle B, x \rangle : \text{algorithm } B \text{ terminates on input } x \} \subseteq \mathbb{N}$

Examples: Computable Reals

- a) Every dyadic rational has two binary expansions
- b) Every rational has a computable binary expansion
- c) If a,b are computable, then also a+b, $a\cdot b$, 1/a ($a\neq 0$)
- d) Fix $p \in \mathbb{R}[X]$. Then p's coefficients are computable $\Leftrightarrow p(x)$ is computable for all computable x.
- e) Every algebraic number is computable; and so is π .
- f) If x is computable, then so are $\exp(x)$, $\sin(x)$, $\log(x)$
- g) Specker's sequence $(\sum_{m < j, t(m) < j} 2^{-m})_j$ is computable, where $\{0,1,2,\ldots,\infty\}$ $\ni t(\langle \mathcal{A},x\rangle):=\#$ steps \mathcal{A} makes on x.

 $r \in \mathbb{R}$ computable iff an algorithm can print, on input $m \in \mathbb{N}$, some $a \in \mathbb{Z}$ with $|r-a/2^m| \le 2^{-m}$

Oracle-Computable Real Numbers

Reminder: $r \in \mathbb{R}$ is computable iff some algorithm can print on any input n some $a \in \mathbb{Z}$ s.t. $|r-a/2^n| \le 2^{-n}$.

Call $(r_j) \subseteq \mathbb{R}$ computable iff an algorithm can print, on input $\langle n,j \rangle \in \mathbb{N}$, some $a \in \mathbb{Z}$ with $|r_j - a/2^n| \le 2^{-n}$.

Theorem: If computable sequence (r_j) converges, then the real $r:=\lim_j r_j$ is computable <u>relative</u> to H. And to every real r computable <u>relative</u> to H, there is a computable sequence (r_i) with $r:=\lim_i r_i$.

Lemma: Suppose $(a_m)\subseteq\mathbb{Z}$ satisfies $|r-a_m/2_m|\leq 2^{-m+1}$. Then $a'_m:=\lfloor a_{m+2}/4 \rfloor$ satisfies $|r-a'_m/2_m|\leq 2^{-m}$.

 $H = \{ \langle \mathcal{B}, \underline{x} \rangle : \text{ algorithm } \mathcal{B} \text{ terminates on input } \underline{x} \} \subseteq \mathbb{N}$

Uniformity: Sequences and Functions

Proposition: If (r_i) is a computable sequence s.t. $|r_i-r_i| \le 2^{-i}+2^{-i}$, then $\lim_i r_i$ is a computable real.

Call $(r_i)\subseteq \mathbb{R}$ computable iff an algorithm can print, on input $\langle n,j\rangle \in \mathbb{N}$, some $a \in \mathbb{Z}$ with $|r_i - a/2^n| \le 2^{-n}$.

Example of a computable sequence $(r_i)\subseteq[0,1]$ such that $\{j:r_j\neq 0\}=H$, the Halting problem.

In numerics, don't test for (in-)equality!

Call $f:\subseteq \mathbb{R} \to \mathbb{R}$ computable iff an algorithm can convert any $(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^m| \le 2^{-m}$ into some $(b_n)\subseteq \mathbb{Z}$ with $|f(x)-b_n/2^n| \le 2^{-n}$

 $H = \{ \langle \mathcal{B}, \underline{x} \rangle : \text{ algorithm } \mathcal{B} \text{ terminates on input } \underline{x} \} \subseteq \mathbb{N}$

Uniformly Computable Real Functions CS700 M. Ziegler

 $x \in \mathbb{R}$ computable $\Leftrightarrow |x-a_n/2^n| \le 2^{-n}$ for recursive $(a_n) \subseteq \mathbb{Z}$

Computable Weierstrass Theorem

Theorem: For $f:[0,1] \rightarrow \mathbb{R}$ the following are equivalent:

- a) There is a machine <u>converting</u> any $\underline{q}=(q_m), q_m \in \mathbb{D}_n$ with $|x-q_m| \le 2^{-m}$, into $(p_n) \in \mathbb{D}_n$ with $|f(x)-p_n| \le 2^{-n}$
- b) There is a machine <u>printing</u> a sequence (of degrees and coefficient lists of) $(P_n) \subseteq \mathbb{D}[X]$ with $||f P_n||_{\infty} \leq 2^{-n}$
- c) The real sequence f(q), $q \in \mathbb{D} \cap [0,1]$, is computable $\land f$ admits a computable modulus of (unif) continuity

$$|x-y| \le 2^{-\mu(n)} \Rightarrow |f(x)-f(y)| \le 2^{-n}$$
 Proof: b \Leftrightarrow c \Rightarrow a \Rightarrow c

Call (r_j) \subseteq \mathbb{R} **computable** iff an algorithm can print, on input $n, j \in \mathbb{N}$, some $q \in \mathbb{D}_n$ with $|r_j - q| \le 2^{-n}$. $\mathbb{D} := \bigcup_n \mathbb{D}_n$, $\mathbb{D}_n := \{a/2^n : a \in \mathbb{Z}\}$

Compactness in Real Computation

Lemma: Let machine \mathcal{A} convert any $\underline{a}=(a_m)\subseteq\mathbb{Z}$ s.t. $|x-a_m/2^m| \le 2^{-m}, \ x \in [0;1], \ \text{to} \ (b_n) \text{ s.t. } |f(x)-b_n/2^n| \le 2^{-n}.$

- **a)** $t_{\mathcal{A}}(n):\underline{a} \to \# \text{steps } \mathcal{A} \text{ makes on input } \underline{a} \text{ to print } b_n$ is locally constant (=continuous) a function
- **b)** giving rise to a *modulus of <u>local</u> continuity* to f: $\forall x \; \exists \underline{a}: \; |x-x'| \leq 2^{-t(n,\underline{a})-1} \implies |f(x)-f(x')| \leq 2^{-n+1}$
- **c)** Its domain $\{\underline{a} \in \mathbb{Z}^{\mathbb{N}}: \exists x \in [0;1] \ \forall m: |x-a_m/2^m| \le 2^{-m} \}$ is compact in Baire Space $\mathbb{Z}^{\mathbb{N}}$ wrt $d(a,b)=2^{-\min\{n:a_n\neq b_n\}}$
- **d)** and its set of finite initial segments is <u>co-r.e.</u> = $\{\underline{\bar{a}} \in \mathbb{Z}^{\mathbb{N}}: m \in \mathbb{N}, \ \forall i,j: -1 \leq a_i \leq 1 + 2^j \land |a_i/2^i a_j/2^j| \leq 2^{-i} + 2^{-j} \}$
- **e)** $t_{\mathcal{A}}: \mathbb{N} \ni n \longrightarrow \max_{a} t_{\mathcal{A}}(n,\underline{a})$ is well-def. and <u>recursive</u>

Compactness in Baire Space


```
Complexity gauge: discrete t_{\mathcal{A}}(\underline{x}), \underline{x} \in \{0,1\}^*
                                                     t_{\mathcal{A}}(n) := \max \{ t_{\mathcal{A}}(\underline{x}) : |\underline{x}| \le n \}
real arguments: t_A(\underline{a},n),
      t_{\mathcal{A}}(n) := \max \{ t_{\mathcal{A}}(\underline{a}, n) : \forall m: /x - a_m / 2^m / \le 2^{-m}, x \in [0; 1] \}
```

König's Lemma: $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is compact iff it is closed and the set $X^* := \{ \bar{a} \in \mathbb{Z}^* \mid \exists b \in \mathbb{Z}^\mathbb{N} : \bar{a}b \in X \}$ of finite initial segments is finitely branching.

```
(X,d) compact iff
                                    \mathbb{Z}^{\mathbb{N}} wrt d(a,b)=2^{-\min\{n:a_n\neq b_n\}}
every sequence
                                              is not compact:
has a converging
                         ((0,0,\ldots),(1,1,\ldots),(2,2,\ldots),\ldots)
sub-sequence.
```

Examples of Computable Real Functions KAIST

- a) f computable \Rightarrow so is any restriction of f
- b) exp, \sin , \cos , $\ln(1+x)$ are computable functions
- c) For a computable sequence $\underline{a} = (a_n)$, the power series $x \rightarrow \sum_{n} a_{n} \cdot x^{n}$ is computable on (-r,r) for fixed $r < R(\underline{a}) := 1/\limsup_n |a_n|^{1/n}$
- d) Let $f \in C[0,1]$ be computable. Then so are $\iint_0^x f(t) dt \quad \text{and} \quad \max(f): x \to \max\{f(t): t \le x\}.$
- e) If $(x,m) \rightarrow f_m(x)$ computable with $||f_n f_m||_{\infty} \le 2^{-n} + 2^{-m}$ then $\lim_{n} f_{n}$ is again computable. uncomputable
- f) For computable $a \in \mathbb{R}$, $f:[0,a] \to \mathbb{R}$, and $g:[a,1] \rightarrow \mathbb{R}$ with f(a)=g(a), their join is computable

Computable Urysohn

Let $(r_m)_m$, $(\varepsilon_m)_m \subseteq \mathbb{Q}$ be computable sequences Then there is a computable $C^{\infty}f:[0;1] \to [0;1]$ s.t. $f^1[0] = [0;1] \setminus \bigcup_m (r_m - \varepsilon_m, r_m + \varepsilon_m)$.

Proof: Let $f(x) := \sum_{m} \max(0, \mathbf{\varepsilon}_{m} - |x - r_{m}|)/2^{m}$

Specker'59: Uncomputable argmin

vs. approximate root

Lemma: There are computable sequences

 $(r_m)_m$, $(\varepsilon_m)_m \subseteq \mathbb{Q}$ s.t. $U := \bigcup_m (r_m - \varepsilon_m, r_m + \varepsilon_m)$ contains all computable reals in [0;1] and has measure $\leq \frac{1}{2}$. approximating a root

Let $(r_m)_m$, $(\varepsilon_m)_m \subseteq \mathbb{Q}$ be computable sequences Then there is a computable $C^{\infty}f:[0;1] \to [0;1]$ s.t. $f^1[0] = [0;1] \setminus \bigcup_m (r_m - \varepsilon_m, r_m + \varepsilon_m)$.

Corollary: There is a computable C^{∞} $f:[0;1] \rightarrow [0;1]$ s.t. $f^{1}[0]$ has measure $\geq \frac{1}{2}$ but contains no computable real number.

Singular Covering of Computable Reals

Lemma: There are computable sequences

 $(r_m)_m$, $(\epsilon_m)_m \subseteq \mathbb{Q}$ s.t. $U := \bigcup_m (r_m - \epsilon_m, r_m + \epsilon_m)$ contains all computable reals in [0;1] and has measure $\leq \frac{1}{2}$. \mathcal{A} computes $r \in \mathbb{R}$

iff prints sequence $a_n \subseteq \mathbb{Z}$ with $|a_n/2^n - a_m/2^m| \le 2^{-n} + 2^{-m}$

Proof idea (diagonalize against <u>all</u> \mathcal{A}): What if \mathcal{A} does not until it outputs $(a_0,a_1,...a_{\langle\mathcal{A}\rangle+4})\in\mathbb{Z}^*$ output? s.t. $0\le a_n\le 2^n$, $|a_n/2^n-a_m/2^m|\le 2^{-n}+2^{-m}\ \forall n,m\le \langle\mathcal{A}\rangle+4$ and let $r_{\langle\mathcal{A}\rangle}:=a_{\langle\mathcal{A}\rangle+4}/2^{\langle\mathcal{A}\rangle+4}$ and $\epsilon_{\langle\mathcal{A}\rangle}:=2^{-\langle\mathcal{A}\rangle-3}$. Then $\lambda(U)\le \sum_{\langle\mathcal{A}\rangle} 2\epsilon_{\langle\mathcal{A}\rangle}=1/2$ and $\mathbb{R}_c\subseteq U$.

Myhill'71: uncomputable ∂ on C¹[0,1]

Recall computable bijection $\psi: \mathbb{N} \rightarrow H$

 $h' := \sum_{k \in \mathcal{S}_{lk}} g_n$ continuous, incomputable, yet $h := \int h' \in C^1[0;1]$ computable. q.e.d.

The Case of the Wave Equation

Computability in Analysis

and Physics

Myhill'71: computable $h \in \mathbb{C}^1[0,1]$ with uncomputable h'(1)

Pour-El&Richards'81 construct a computable $f \in C^1(\mathbb{R}^3)$ such that for g:=0 the unique solution is Marian B.Pour-El Jonathan I.Richards incomputable at t=1 and x=(0,0,0).

Church-Turing Hypothesis (Kleene): Everything that can be computed by a Turing machine can also be computed

by a physical device - and vice versa! (6) Springer Verlag

 $\frac{\partial^2}{\partial t^2} u(\underline{x},t) = \Delta u(\underline{x},t), \ u(\underline{x},0) = f(\underline{x}), \ \partial/\partial t \ u(\underline{x},0) = g(\underline{x})$

The Case of the Wave Equation

Myhill'71: computable $h \in \mathbb{C}^1[0,1]$ with uncomputable h'(1)

Pour-El&Richards'81 construct a computable $f \in C^1(\mathbb{R}^3)$ such that for g:=0 the unique solution is *in*computable.

Kirchhoff's formula:
$$u(t, \vec{x}) = \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{|\vec{y} - \vec{x}| = t} f(\vec{y}) \, d\sigma(\vec{y}) \right) + \frac{1}{4\pi t} \int_{|\vec{y} - \vec{x}| = t} g(\vec{y}) \, d\sigma(\vec{y}) \quad f(\vec{x}) := h(|\vec{x}|^2)$$
$$u(t, 0) = \frac{d}{dt} \left(h(t^2) \cdot t \right) = h'(t^2) \cdot 2t^2 + h(t^2)$$
$$\frac{\partial^2}{\partial t^2} u(\underline{x}, t) = \Delta u(\underline{x}, t), \ u(\underline{x}, 0) = f(\underline{x}), \ \partial/\partial t \ u(\underline{x}, 0) = g(\underline{x})$$