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Problem 1 (3+3+4Problem 1 (3+3+4Problem 1 (3+3+4Problem 1 (3+3+4 points): points): points): points):  

a) Let A⊆� be decidable and  ∅⊂B⊂� arbitrary. Prove A�B. 

b) Prove H�T, where H denotes the Halting Problem and T the Totality Problem: 

   H = { 〈A,x〉 : A terminates on input x },   T = { 〈A〉 : A terminates on all inputs } 

c) Prove T�| H . 

Recall that a real number r is computable iff some (equivalently: all) of the following hold: 

a) r has a decidable binary expansion 

b) There exists a computable integer sequence (am) s.t.  ∀m: |r-am/2m| ≤ 2-m. 

c) There exist computable sequences (qn) and (εn) of  

   (numerators and denominators of) rational numbers such that  |r-qn| ≤ εn →0. 

Problem Problem Problem Problem 2222 (3 (3 (3 (3++++4444+3+3+3+3 points): points): points): points):  

a) Give an example of a real number r which is not computable. 

b) Conclude that this number is transcendental. 

c) Prove that every non-empty open interval contains a computable real. 

Problem Problem Problem Problem 3333 ( ( ( (3333++++4+4+4+4+3333 points): points): points): points):  

a) Let a,b be computable real numbers. Prove that a+b is computable. 

b) Let a,b be computable real numbers. Prove that a·b is computable. 

c) Let (aj), (bj) be computable sequences. Prove that (aj+bj) is computable. 

Recall that a real sequence (r j) is called computable  

iff there exists a computable integer double sequence aj,m such that  ∀m,j: |r j-aj,m/2m| ≤ 2-m. 
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Recall that a real function f:[0;1]→� is computable iff some Turing machine can convert 

any integer sequence am satisfying |x-am| ≤ 2-m for some x, into an integer sequence bn s.t. 

|f(x)-bn| ≤ 2-n ; equivalently: there exists a computable sequence of (degrees and coefficient 

lists of) integer polynomials pm such that ||f-pm||∞ ≤ 2-m. 

Problem Problem Problem Problem 4444 ( ( ( (3333++++4+34+34+34+3 points): points): points): points):  

a) Let (r j)⊆[0;1] denote a computable sequence of real numbers and f:[0;1]→� a  

  computable real function. Prove that (f(r j)) constitutes again a computable real sequence. 

b) Let (r j) denote a computable sequence of real numbers such that |r j-rk| ≤ 2-j+2-k.  

   Prove that r:=limj r j exists and is a computable real number. 

c) Give an example of a computable real sequence (r j) in [0;1]  

   which does not have a computable accumulation point.    

    

    

Problem Problem Problem Problem 5555 ( ( ( (10101010 points): points): points): points): Let (r j) denote an arbitrary computable sequence of real numbers. 

Without proofs, check (√) which of the following sets are 

 

 { j∈� : r j = 0 } { j∈� : r j ≠ 0 } { j∈� : r j > 0 } { j∈� : r j ≥ 0 } 

decidable     

semi-decidable     

co-semi-decidable     

recursively enumerable     


